
Variable-Arity Generic Interfaces

T. Stephen Strickland, Richard Cobbe, and Matthias Felleisen

College of Computer and Information Science
Northeastern University

Boston, MA 02115
sstrickl@ccs.neu.edu

Abstract. Many programming languages provide variable-arity func-
tions. Such functions consume a fixed number of required arguments
plus an unspecified number of “rest arguments.” The C++ standardiza-
tion committee has recently lifted this flexibility from terms to types with
the adoption of a proposal for variable-arity templates. In this paper we
propose an extension of Java with variable-arity interfaces. We present
some programming examples that can benefit from variable-arity generic
interfaces in Java; a type-safe model of such a language; and a reduction
to the core language.

1 Introduction

In April of 2007 the C++ standardization committee adopted Gregor and Järvi’s
proposal [1] for variable-length type arguments in class templates, which pre-
sented the idea and its implementation but did not include a formal model or
soundness proof. As a result, the relevant constructs will appear in the upcom-
ing C++09 draft. Demand for this feature is not limited to C++, however. David
Hall submitted a request for variable-arity type parameters for classes to Sun in
2005 [2].

For an illustration of the idea, consider the remarks on first-class functions
in Scala [3] from the language’s homepage. There it says that “every function is
a value. Scala provides a lightweight syntax for defining anonymous functions, it
supports higher-order functions, it allows functions to be nested, and supports
currying.” To achieve this integration of objects and closures, Scala’s standard
library pre-defines ten interfaces (traits) for function types, which we show here
in Java-like syntax:

interface Function0<Result> {

Result apply();

}

interface Function1<Arg1,Result> {

Result apply(Arg1 a1);

}

interface Function2<Arg1,Arg2,Result> {



Result apply(Arg1 a1, Arg2 a2);

}

...

A cursory glance shows that these predefined interfaces differ only in the num-
ber of function arguments. They accept between zero and nine arguments, which
means that an attempt to create a closure of ten arguments fails. If we think
of generic interfaces as functions from types to types, Scala’s problem is ob-
viously one of a missing mechanism for abstracting over a variable number
of types. In general, while many programming languages—including object-
oriented languages—support variable-arity methods, their designers fail to rec-
ognize that such a construct is as useful at the type level as it is at the value
level.

With this paper, we propose to add variable-arity abstractions at the type
level to Java [4]. In contrast to the C++ approach, we design generic interfaces,
not generic classes. Furthermore, we develop a formal model and show that
our approach is type-sound; that it can be type-checked independently (not via
template expansion à la C++); and that it is compatible with existing Java.

In sections 2 and 3, we provide an informal overview of the proposed extension
and present some examples that illustrate the use of this new mechanism. We also
argue that interfaces are the natural mechanism for introducing variabble-arity
type abstractions. Then, in section 4 we introduce FlexiJava, a sound model of a
Java-like language that includes a variable-arity mechanism for type parameters.
We also prove in section 5 that a compilation back to an ordinary Java-like
language exists. We conjecture that our work applies equally to other object-
oriented languages with generics such as C# [5, 6] and Scala.

2 Overview

Java programmers can introduce type parameters for interfaces and classes.
While it is in principle possible to change both to accommodate variable-arity
type abstraction, our exploration suggests that interfaces are the more natu-
ral starting point in Java while still providing the power to handle most of the
examples from Gregor and Järvi’s proposal. The first two subsections sketch a
syntax for writing down variable-length type parameter lists and their uses. By
the third subsection, we have enough material to discuss the rationale for our
design choice.

2.1 Variable-length type parameter lists

Extending Java with variable-arity type parameter lists requires two changes to
the syntax. The first is a change to the interface header. With this addition, a
programmer may use a new kind of parameter specification for the last position:

interface I<A extends S, B extends T ...>



Following the tradition of languages like Lisp and Scheme, we refer to this as
the rest argument.

The natural interpretation of this specification is as a family (or function) of
related interfaces. The dots are a natural notation for this purpose, suggesting
an abbreviation. Spelling out the abbreviations creates natural, finite versions
of variable-arity interfaces:

interface I<A extends S>

interface I<A extends S, B1 extends T>

interface I<A extends S, B1 extends T, B2 extends T>

...

That is, a member of this family of interfaces takes at least one type (bounded
by S) plus an arbitrary number of additional types, each bounded by T. All
members of this family share the same name, I, much like overloaded methods
use the same name for a family of methods.

2.2 References to rest type parameters

The body of a variable-arity interface may mention the sequence of types in two
different ways:

1. in the type parameters of a generic class or interface as B ..., which refers
to the entire sequence of types; and

2. in the formal parameter list of a method signature as B x, ..., which de-
notes a list of formal parameters of these types.

Each kind of occurrence immediately suggests a useful example, and we consider
those in the following section. Before doing so, let’s quickly look at some abstract
examples.

The following pair of interface definitions (with dashes for irrelevant details)
employ variable-arity type parameter lists:

interface J<F extends U ...> { ___ }

interface I<A extends U, B extends U ...>

extends J<A, B ...> { ___ }

While the first one is parameterized over just a rest-argument type sequence,
the second one takes at least one type. In addition, the second one re-uses its
type parameters to extend the first interface. This is just one way to re-use the
entire sequence of types at once; there are many others.

The second example shows how a sequence of types can be used to specify a
flexible method signature:

interface K<A extends T ...> {

void m(A x, ...);

}



This interface takes an arbitrary number of types. It introduces a method that
takes the same number of arguments with the corresponding types. The following
two classes are legitimate implemenations of K:

class CK implements K<Integer, Boolean> {

public void m(Integer i, Boolean b) { return ; }

}

class DK implements K<List<Integer>> {

public void m(List<Integer> li) { return ; }

}

2.3 Rationale

Our proposal diverges from that for C++ in that it provides only variable-arity
interfaces, not classes. This provides almost as much expressive power as in C++
while avoiding significant problems with name generation.

Let’s analyze this difference with an example. Assume an extension of our
proposal that allows variable-arity generic classes:

class C<A extends T ...> {
private A fd ...;

public C(A fd_in ...) { ___ }
}

In the natural interpretation of this class definition, the class C<T1, T2, T3>
contains three fields, of types T1, T2, and T3, respectively. The question is what
these fields are called and how the rest of the class can refer to them. Clearly,
because they cannot all be named fd, the compiler has to synthesize field names.
This synthesis must use a name creation protocol, so that the programmer can
predict the names and write code that refers to these fields.1

Additionally, because this class contains one field for each type argument,
C’s methods cannot make any assumptions about the number of fields in the
class. As a result, it is impossible to write the simplest of methods, like an
implementation of equals() that compares all of the object’s fields with those
of the argument:

public boolean equals(C<A...> rhs) {
return (fd.equals(rhs.fd) && ___
// Impossible to finish! (See text below.)

The author of such a method cannot even know how many conjuncts the argu-
ment to return requires. In other words, allowing field declarations like those
in C above would require a new construct for processing indeterminate numbers
of fields.
1 The protocol must satisfy basic “hygiene standards” [7], i.e., avoid accidental variable

capture, and this requires significant additional complexity.



The example’s constructor suffers from the same problems. In C<T1, T2,
T3>, the constructor would have three parameters of the same types as the
fields. Again, though, the language would have to name those parameters in a
precisely-defined fashion, and it would have to provide a mechanism to allow the
constructor to manipulate an unknown number of formal parameters.

Limiting variable-arity generics to interfaces elegantly avoids these problems.
Java interfaces may contain only constant definitions and method signatures.
Since constant definitions must include an initial value, specifying a variable
number of constants (as in the class above) is not meaningful. While method
signatures in interfaces may contain arguments associated with the type rest ar-
gument in our proposal, method bodies may not appear, so we avoid the naming
problem. While it is true that any class which implements the interface must
provide a body for such a signature, the class always implements the interface
as applied to concrete type arguments, so the class author can (indeed, must)
write out each of the method’s formal parameters explicitly, with its name, as
our examples K, CK, and DK of the previous section demonstrate.

While the C++ proposal focuses on the definition of concrete classes with rest
type parameters, it too avoids the generation of new variable names by restricting
the ways in which the programmer may use those type parameters. It is, for
instance, impossible to introduce fields whose type is specified entirely by the rest
type parameter. While it is possible to define concrete methods whose signature
uses the rest type argument, as with the constructor in our C<T...> example
above, their proposal effectively treats the corresponding formal parameter as a
heterogeneous value rest parameter and limits its use specifically to avoid the
naming problems.

Our proposal does not include the ability to use the rest type argument in
this fashion. Supporting this feature would require additional changes to the
language, involving modifications to overload resolution as well as introducing
a C++-like template specialization mechanism. This would allow deconstruct-
ing this heterogeneous value rest parameter by extracting its first element and
recurring on the rest. We leave this functionality to further research.

3 Examples

Variable-arity type arguments for interfaces allow for a natural integration of
higher-order functions with an object-oriented programming language. In ad-
dition, they enable a natural encoding of tuples. For additional examples, see
Gregor and Järvi’s paper [1]; all but one of those are expressible within our
proposed Java extension.

3.1 Functions

Given variable-arity interfaces, a Scala-style integration of functional and object-
oriented programming is straightforward. A programmer can now specify a com-
pletely general function type:



class Fact implements Function<Integer, Integer> {

Integer apply(Integer n) {

if(n == 0)

return 1;

else

return n * this.apply(n - 1);

}

}

Fig. 1. Implementation of factorial

new Function<Integer, Integer>() {

Integer apply(Integer n) {

if(n == 0)

return 1;

else

return n * this.apply(n - 1);

}

}

Fig. 2. Factorial as an anonymous class

interface Function<Result, Domain ...> {

Result apply(Domain d, ...);

}

This Function interface requires a single method, called apply, from an imple-
menting class. The result type of the method is the first, non-optional type in the
parameter list; the input types are the remaining types from the rest argument.

Any class that implements this Function interface for a given sequence of
domain types must contain an apply method that takes in that many arguments,
of those types, in order. Figure 1 presents an implementation of the factorial
function that implements an appropriate instantiation of the Function interface,
and figure 2 shows Factorial written as an anonymous inner class, similar to
anonymous functions in functional languges.

In a language with autoboxing, which both Java and C# now implement,
using Factorial is almost as natural as in a functional language:
new Factorial().apply(n) computes the factorial of n. With Scala’s syntactic
sugar for functions, variable-arity interfaces thus create a complete and smooth
integration of functional and object-oriented programming.2

3.2 Tuples

Scala also includes interfaces for tuples, much like those for first-class functions.
In contrast to the Function interface, however, it isn’t obvious how variable-arity

2 The integration of higher-order functions poses additional problems, which are com-
pletely orthogonal to variable-arity type parameters.



interfaces can help with tuples. While the flexible type parameter list allows a
concise specification of a tuple’s component types, the real problem is the select
operation on tuples, which given an index i returns the ith element from a tuple:

interface Tuple<Element ...> {

??? select(Integer i);

}

Because a tuple is heterogeneous, there is no single return type for select.
Worse, not all integers denote valid element indices.

With variable-arity parameter lists, we can provide a tuple-like structure
using the usual theoretical trick of a case-like function:

interface Tuple<Element ...> {

<S> S select(Function<S, Element ...> f);

}

That is, the select method takes a function that takes all the elements of the
tuple. A benefit of this scheme is that this function can perform operations on
multiple elements of the tuple at once. It is also easy to translate a more natural
syntax for tuples which may be more programmer-friendly into this interface.

Here is one specific implementation of Tuple:

new Tuple<Integer,Boolean>() {

Integer x = 3;

Boolean y = true;

<S> S select(Function<S, Integer, Boolean> f) {

return f.apply(x, y);

}

}

This anonymous class pairs an Integer with a Boolean.

4 The FlexiJava Model

Our theoretical work has two goals. First, we wish to prove that extending
Java with variable-arity generic interfaces is type sound. Second, we wish to
demonstrate that the extension is compatible with the existing Java compilation
and run-time framework.

In support of these goals, we introduce two models: Interface Java (IJ) and
FlexiJava. Work on both starts with the observation that our theory clearly
needs a Java model that includes generic types as well as interfaces. We therefore
synthesize Interface Java (IJ) from Featherweight Generic Java (FGJ) [8] and
ClassicJava [9] and use it as the starting point of our explorations.

In the first subsection, we introduce IJ, its syntax, and its semantics. The
second subsection concerns FlexiJava, the extension of IJ with variable-arity
interfaces, covering syntax, static semantics, and dynamic semantics. The third
section establishes type soundness.



Π ::=
#»
L e

T ::= α | N

N ::= C<
#»
T >

L ::= class C <
#                 »
α ext N> ext N impl

#»
N {

#       »
T f;

#»
M }

| ifc C <
#                 »
α ext N> ext

#»
N {

# »
MS }

M ::= <
#                 »
α ext N> T m(

#    »
T x) { e }

MS ::= <
#                 »
α ext N> T m(

#    »
T x)

e ::= x | e.f | e.m<
#»
T >( #»e ) | new N( #»e ) | (N) e

| let
#                »
N x = e in e

MT ::= <
#                 »
α ext N>

#»
T → T (method type)

C, D, E ::= class or interface name
S, U, V ::= type (T)
P, Q, R ::= type application (N)

Fig. 3. IJ syntax

4.1 Interface Java (IJ)

IJ’s syntax extends FGJ’s syntax with Java-style interfaces and let expressions.
The latter model Java-style local variable bindings, which we need to translate
FlexiJava to Java 1.5. Consistent with Java’s semantics for local bindings, the
scope of a let-bound identifier includes the body of the let as well as the
right-hand side of all subsequent binding clauses in the let.

Figure 3 defines the exact syntax of IJ. We abbreviate the Java keywords
interface, extends, and implements as ifc, ext, and impl. The grammar
includes the nonterminal MT for use in the typing rules and supporting relations.

Figure 4 summarizes the model’s type judgments and environments. In the
statement

methDeclΠ,C< #»
T >(m) = (MT, #»x , e)

the types #»
T have already been substituted for C’s type parameters in MT and e;

the same holds for imethDeclΠ,C< #»
T >, methΠ,C< #»

T >, and imethΠ,∆,C< #»
T >.

The introduction of interfaces requires consistency checks for programs to be
well-typed. Consider the following declaration:

interface I1 extends I2, I3, I4 { }

If more than one of I2, I3, and I4 define a particular method m, then these dec-
larations must be consistent. Specifically, they must all take the same arguments
(in the absence of method overloading), and one of the methods must have a
return type that is a subtype of all of the other return types (in keeping with
the fact that Java now allows covariance in method return types). Otherwise,
the type of the method m in I1 is not well-defined. If, on the other hand, I1
were to override the definition of m, then normal covariance would apply and no
additional consistency checks would be necessary.3

3 At time of writing, Sun’s Java compiler implements a slight variation of this re-
quirement, in which the superinterfaces’ definitions of m must be consistent even



Environments:
∆ maps type variables to their bounds
Γ maps variables to their types

Relations:
S <:Π∆ T S is a subtype of T
C EΠ D C is a subclass of D, ignoring type arguments
methDeclΠ,C< #»

T >(m) = (MT, #»x , e) method m is declared (not inherited) in class C<
#»
T >

with type MT, arguments #»x , and body e

methΠ,C< #»
T >(m) = (MT, #»x , e) method m is contained in class C<

#»
T > with type MT,

arguments #»x , and body e

imethDeclΠ,C< #»
T >(m) = MT method m is declared (not inherited) in interface C<

#»
T >

with type MT

imethΠ,∆,C< #»
T >(m) = MT method m is contained in interface C<

#»
T > with type MT

consIfcs(Π,∆, N,
#»
P ) The interfaces

#»
P , the immediate super-interfaces of N,

are consistent
dcast(Π, C, D) it is safe to cast an instance of D to C, ignoring type

arguments
override(Π,∆, m, N, MT) a subtype of N may override method m with type

MT (allowing covariance in the return type)
Functions:

fields(Π, N) constructs a sequence of all fields in class N with
their types

bound(∆, T) maps type T to its bound
Type judgments:
` Π : T program Π has type T

Π,∆ ` T type T is well-formed in program Π
Π ` L class definition L is well-typed in Π
Π, C ` M method definition M is well-typed in Π and class C

Π,∆, Γ ` e : T expression e has exactly type T under Π, ∆, Γ

Fig. 4. IJ judgments and relations

While IJ is reasonably complete, its generics do not fully describe Java’s.
First, Java allows type variable to serve as bounds, so one could write

class C<X extends Object, Y extends X> · · ·

IJ’s syntax, however, requires bounds on type variables to be type applications,
not type variables, a restriction inherited from FGJ. Second, IJ, also like FGJ,
does not include support for Java’s wildcard types and associated features.

Static and Dynamic Semantics For space reasons we do not include the full
static semantics, but we do show subtyping rules in figure 5 and rules for method

when I1 overrides m. Sun has acknowledged that the consistency check described
above is the intended behavior and opened a bug report against the compiler (bug
#6294779) [Personal communication with Gilad Bracha and Peter von der Ahé, July
2005].



ST-Trans
T <:Π∆ U U <:Π∆ V

T <:Π∆ V

ST-Class
#                   »
T <:Π∆ N Π contains class C<

#                 »
α ext N> ext P · · ·

C<
#»
T > <:Π∆ [

#    »

T/α]P

ST-Refl
T <:Π∆ T

ST-ClassIfc
#                   »
T <:Π∆ N Π contains class C<

#                 »
α ext N> ext P impl

#»
Q · · ·

C<
#»
T > <:Π∆ [

#    »

T/α]Qi

ST-TVar
∆(α) = T

α <:Π∆ T

ST-Ifc
#                   »
T <:Π∆ N Π contains ifc C<

#                 »
α ext N> ext

#»
P · · ·

C<
#»
T > <:Π∆ [

#    »

T/α]Pi

MT-Subtype
#»
P = [

#     »

β/α]
#»
N

#»
U = [

#     »

β/α]
#»
T U0 <:Π∆ [

#     »

β/α]T0

<
#                 »

β ext P>
#»
U → U0 <:Π∆ <

#                 »
α ext N>

#»
T → T0

Fig. 5. Subtyping in IJ

lookup in figure 6. For conciseness we extend the <:Π∆ relation to cover method
types as well.

IJ’s operational semantics is defined as a rewriting system with evaluation
contexts, similar to the one for Classic Java. Figure 7 defines evaluation contexts,
values, and the reductions, which depend on the method lookup function and
the subtyping relation; plugging in different ones produces a different semantics.
(The bullet • denotes an empty sequence.)

Soundness In addition to creating the IJ model, we have proved that our
extensions result in a sound type system via an application of the standard
method [10, 9].

Theorem 1 (Type Soundness). If Π = #»
L e and ` Π : T, then one of the

following must be true:

– Π ` e→∗IJ v, where Π, ∅, ∅ ` v : S and S <:Π∅ T, or
– Π ` e ⇑, or
– Π ` e→∗IJ error: bad cast.

We omit the proof of soundness for space reasons.

4.2 FlexiJava

We are now ready to extend IJ to produce FlexiJava, our model for variable-arity
generics.



MethIn-Class
Π contains class C<

#                 »
α ext n> · · · { · · · #»

M }

<
#                 »

β ext P> S0 m(
#    »
S x) { e } ∈ #»

M MT = [
#    »

T/α](<
#                 »

β ext P>
#»
S → S0)

methDeclΠ,C< #»
T >(m) = (MT, #»x , [

#    »

T/α]e)

MethIn-Ifc
Π contains ifc C<

#                 »
α ext N> · · · { # »

MS } Π,∆ ` C<
#»
T >

<
#                 »

β ext P> S0 m(
#    »
S x, γ...) ∈ # »

MS MT = [
#    »

T/α](<
#                 »

β ext P>
#»
S , γ... → S0)

imethDeclΠ,C< #»
T >(m) = MT

MD-ClassImm
methDeclΠ,C< #»

T >(m) = (MT, #»x , e)

methΠ,C< #»
T >(m) = (MT, #»x , e)

MD-IfcImm
imethDeclΠ,C< #»

T >(m) = MT

imethΠ,∆,C< #»
T >(m) = MT

MD-Superclass
Π contains class C<

#                 »
α ext N> ext P · · · { · · · #»

M }

m /∈ #»
M methΠ,[ #   »

T/α]P(m) = (MT, #»x , e)

methΠ,C< #»
T >(m) = (MT, #»x , e)

MD-SuperIfc
Π contains ifc C <

#                 »
α ext N> ext

#»
P {

# »
MS }

m /∈ # »
MS MT = minΠ∆{MT′ | imethΠ,∆,[ #   »

T/α]Pi
(m) = MT

′, Pi ∈
#»
P }

imethΠ,∆,C< #»
T >(m) = MT

Fig. 6. IJ method lookup

The Abstract Syntax FlexiJava uses the same form of type judgments and
environments as IJ (figure 4), though the full definitions differ due to the in-
troduction of variable-arity generics. Figure 8 defines the abstract syntax of
FlexiJava. An ellipsis on the baseline (...) always represents a literal token
from the program text; we use centered dots (· · ·) to indicate an omission from
the program text.

As in IJ, the class Object does not appear in the program directly; our model
treats this class specially. Like Java, the model treats interfaces with no direct
superinterface as a subtype of Object as in Java. Thus a class or interface may
use Object as a type variable’s bound to indicate that any type is acceptable
for that variable, just as in IJ.

Static Semantics FlexiJava’s type system is based on IJ’s, with extensions
to handle the new kinds of interface definitions and method signatures. The
differences primarily concern the well-formedness of types and the definitions of
subtyping. The judgments have the same form as in IJ, although in contexts



v ::= new N( #»v )

E ::= [ ] | E.f | E.m< #»
N >( #»e ) | v.m<

#»
N >( #»v E #»e )

| new N( #»v E #»e ) | (N)E | let N x = E #                »
N x = e in e

Π ` E [new N( #»v ).fi]→IJ E [vi] R-Field
where fields(Π, N) =

#    »
T f

Π ` E [new N( #»v ).m<
#»
T >( #»u )]→IJ E

h
[

#    »

u/x, new N( #»v )/this,
#    »

T/β]e
i

R-Call

where methΠ,N(m) = (<
#                 »

β ext P>
#»
U → U0,

#»x , e)

Π ` E [(P) new N( #»v )]→IJ E [new N( #»v )] R-Cast
where N <:Π∅ P

Π ` E [(P) new N( #»v )]→IJ error: bad cast R-BadCast
where N 6<:Π∅ P

Π ` E [let • in e]→IJ E [e] R-EmptyLet

Π ` E [let N x = v
#                »
P y = e in e0]→IJ E

h
[v/x]let

#                »
P y = e in e0

i
R-Let

Fig. 7. Dynamic semantics for IJ and FlexiJava

Π ::=
#»
L e

T ::= α | N

N ::= C<
#»
T > | C<

#»
T , α...>

L ::= class C <
#                 »
α ext N> ext N impl

#»
N {

#       »
T f;

#»
M }

| ifc C <
#                 »
α ext N> ext

#»
N {

# »
MS }

| ifc C<
#                 »
α ext N, α ext N...> ext

#»
N {

# »
MS }

M ::= <
#                 »
α ext N> T m(

#    »
T x) { e }

MS ::= <
#                 »
α ext N> T m(

#    »
T x)

| <
#                 »
α ext N> T m(

#    »
T x, α...)

e ::= x | e.f | e.m<
#»
T >( #»e ) | new N( #»e ) | (N) e

| let
#                »
N x = e in e

MT ::= <
#                 »
α ext N>

#»
T → T | <

#                 »
α ext N>

#»
T , α... → T

C, D, E ::= class or interface name
S, U, V ::= type (T)
P, Q, R ::= type applications (N)

Fig. 8. FlexiJava syntax



WF-TVar
∆(α) = ( ,ff)

Π,∆ ` α

WF-Class
Π contains class C <

#                 »
α ext N> · · ·

#                 »

Π,∆ ` T
#                           »

T <:Π∆ σ(N) where σ(N) = [
#    »

T/α]N

Π,∆ ` C<
#»
T >

WF-TVar-Dots
∆(α) = ( , tt)

Π,∆ ` α...

WF-Ifc
Π contains ifc C <

#                 »
α ext N> · · ·

#                 »

Π,∆ ` T
#                           »

T <:Π∆ σ(N) where σ(N) = [
#    »

T/α]N

Π,∆ ` C<
#»
T >

WF-IfcExt
Π contains ifc C<

#                 »
α ext N, β ext P...> · · ·

#                 »

Π,∆ ` T (
#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

#                           »

U <:Π∆ σ(N)
#                           »

V <:Π∆ σ(P) where σ(N) = [
#    »

U/α,
#»
V /β...]N

Π,∆ ` C<
#»
T >

WF-IfcExtRest
Π contains ifc C<

#                 »
α ext N, β ext P...> · · · #                 »

Π,∆ ` T Π,∆ ` γ...
(

#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

#                           »

U <:Π∆ σ(N)
#                           »

V <:Π∆ σ(P) γ <:Π∆ σ(P)

where σ(N) = [
#    »

U/α, (
#»
V , γ...)/β...]N

Π,∆ ` C<
#»
T , γ...>

Fig. 9. Well-formed types

where we refer to both IJ and FlexiJava, we disambiguate with a subscript on
the turnstile: `IJ and `FXJ.

To determine if the type C<
#»
T> is well-formed—i.e., the judgment Π,∆ `

C<
#»
T> is derivable—we must verify that all type arguments #»

T are well-formed,
look up C in the program Π, and ensure that all type arguments #»

T satisfy the
bounds specified by C’s definition. Figure 9 defines this judgment formally.

If C is defined to be an interface with variable arity, then we must split the
actual parameters into those that correspond to the fixed arguments and those
that correspond to the rest argument. To do this, we use the splitAt function.
We omit its formal definition; informally, splitAt( #»

T , n) returns a pair of lists,
the first of which consists of the first n elements of #»

T ; the second result is the
remainder of T. If #( #»

T ) < n, where #( #»
T ) is the length of the sequence #»

T , then
splitAt( #»

T , n) is undefined.
To determine if C< #»

T, α...> is well-formed, we use the same logic as above.
In order for this type to make sense, it must appear somewhere within the
definition of an interface that defines α to be a rest argument. To ensure this,
we extend the mapping ∆ slightly beyond what is needed for IJ; it now maps a
type variable to a pair consisting of a type and either true or false (written tt



ST-FlexIfc
Π contains ifc C<

#                 »
α ext N, β ext Q...> ext

#»
P · · ·

(
#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

C<
#»
T > <:Π∆ [

#    »

U/α,
#»
V /β...]Pi

ST-IfcDots
Π contains ifc C<

#                 »
α ext N, β ext Q...> ext

#»
P · · ·

(
#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

C<
#»
T , γ...> <:Π∆ [

#    »

U/α, (
#»
V , γ...)/β...]Pi

MT-SubtypeDots
#»
P = [

#     »

β/α]
#»
N

#»
U = [

#     »

β/α]
#»
T U0 <:Π∆ [

#     »

β/α]T0

<
#                 »

β ext P>
#»
U , γ... → U0 <:Π∆ <

#                 »
α ext N>

#»
T , γ... → T0

Fig. 10. Additional subtyping rules in FlexiJava

and ff). The type is the variable’s bound as with IJ; the boolean flag indicates
whether or not the type variable was bound as a rest argument.

Determining whether one type is a subtype of another (figure 10) proceeds
much as in IJ. FlexiJava adds rules to cover the additional cases of interfaces and
types with rest args. In the case of the MT-SubtypeDots rule, the same type
variable γ appears on both sides of the subtyping expression in the conclusion.
This is intentional, as this rule is only used in the process of type-checking the
definition of an interface with a rest argument. Since this relation is applied to
the method types after the interface’s type arguments have been substituted
through, it is correct to require the same type variable in both places. Finally,
there are additional rules (not shown) that guarantee that every class is a subtype
of Object and that every interface without a direct superinterface is a subtype
of Object.

Figure 11 specifies some of the rules for method lookup in FlexiJava. These
rules are in addition to those detailed in figure 6 and they cover only some typical
cases. There are variants of MethIn-IfcDots and MD-SuperIfcDots to deal
with method signatures and interfaces with and without rest arguments in all
feasible combinations.

Finally, figure 12 defines type checking for programs, as well as the supporting
relations. Again, there is a variant of TIfc that handles the case where the
interface is not defined with a rest argument. We omit these rules here because
they are similar to those for FGJ and don’t contribute any new insights.

Design Constraint The ConsistentRestArgs rule from this figure uses
the numArgs function. For a program Π, method m, and class or interface C,
numArgs(Π, m, C) returns a pair of numbers, indicating the number of fixed and
rest arguments in the method’s original definition(s) for C. (The number of rest
arguments is always either zero or one.) By the method’s original definitions,



MethIn-IfcDots
Π contains ifc C<

#                 »
α ext N, γ ext Q...> · · · { # »

MS } Π,∆ ` C<
#»
T , δ...>

<
#                 »

β ext P> S0 m(
#    »
S x, γ...) ∈ # »

MS (
#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

MT = [
#    »

U/α, (
#»
V , δ...)/γ...](<

#                 »

β ext P>
#»
S , γ... → S0)

imethDeclΠ,C< #»
T , δ...>(m) = MT

MD-IfcImmDots
imethDeclΠ,C< #»

T , α...>(m) = MT

imethΠ,∆,C< #»
T , α...>(m) = MT

MD-SuperIfcDots
Π contains ifc C<

#                 »
α ext N, β ext Q...> ext

#»
P {

# »
MS }

m /∈ # »
MS (

#»
U ,

#»
V ) = splitAt(

#»
T , #( #»α))

MT = minΠ∆{MT′ | imethΠ,∆,[ #   »

U/α,(
#           »
V,γ...)/β...]Pi

(m) = MT
′, Pi ∈

#»
P }

imethΠ,∆,C< #»
T , γ...>(m) = MT

Fig. 11. Additional FlexiJava method lookup rules

we mean its definitions in all classes/interfaces D where C EΠ D but there is no
class or interface E such that E defines m and D EΠ E. This rule ensures that
if one supertype of C defines the method with x fixed arguments and one rest
argument, then all supertypes do. This requirement is necessary to ensure that
our translation, described in the next section, is well-defined; it is not needed
for type soundness for FlexiJava.

Dynamic Semantics FlexiJava’s operational semantics is visually the same as
IJ’s; see figure 7 for the notation. We use →FXJ for FlexiJava, and →IJ for IJ.
Semantically, the reduction relations differ because they use different method
lookup functions (methΠ,C< #»

T > for FlexiJava) and subtyping relation (<:Π∆ for
FlexiJava) for casts.

4.3 Soundness and Compatibility

The FlexiJava model satisfies a type soundness theorem.

Theorem 2 (Type Soundness). If Π = #»
L e and ` Π : T, then one of the

following must be true:

– Π ` e→∗FXJ v, where Π, ∅, ∅ ` v : S and S <:Π∅ T, or
– Π ` e ⇑, or
– Π ` e→∗FXJ error: bad cast.

The proof follows the standard method [10, 9] of subject reduction and progress
lemmas.



TProg
Π =

#»
L e

#          »

Π ` L Π, ∅, ∅ ` e : T all class, ifc names in
#»
L distinct EΠ antisymmetric

` #»
L e : T

TClass
∆ = {

#                  »

α : (N,ff)} #                 »

Π,∆ ` N Π,∆ ` P
#                 »

Π,∆ ` Q
#                 »

Π,∆ ` T

P = D<
#»
V > where Π contains class D · · · consRestArgs(Π,∆, (P,

#»
Q ))

Qi = E<· · ·> where Π contains ifc E · · · for all Qi ∈
#»
Q fields(Π, P) =

#    »
U g

#»
f , #»g all distinct

#               »

Π, C ` M #»m all distinct, where
#»
M =

#                                                       »

<· · ·> W m(· · ·) { · · · }
∀Qi ∈

#»
Q , m . imethΠ,∆,Qi(m) = MT

′ for some MT
′

⇒ ∃MT, #»x , e .methΠ,C< #»α>(m) = (MT, #»x , e)

Π ` class C <
#                 »
α ext N> ext P impl

#»
Q {

#       »
T f;

#»
M }

TFlexIfc
∆ = {

#                  »

α : (N,ff), β : (Q, tt)} #                 »

Π,∆ ` N
#                 »

Π,∆ ` P consRestArgs(Π,∆,
#»
P )

Π,∆ ` Q for all Pi ∈
#»
P Pi = D<· · ·> and Π contains ifc D · · · #                  »

Π, C ` MS
#»m all distinct, where

# »
MS =

#                                 »

<· · ·> W m(· · ·) consIfcs(Π,∆, C< #»α, β...>,
#»
P )

Π ` ifc C<
#                 »
α ext N, β ext Q...> ext

#»
P {

# »
MS }

ConsistentIfcs
∀m . m ∈ dom(imethΠ,∆,Pi) for some Pi ∈

#»
P

⇒ (m = dom(imethDeclΠ,N)
or ∃Pj ∈

#»
P . imethΠ,∆,Pj (m) = MTj)

where MTj =
min{MTi | imethΠ,∆,Pi(m) = MTi, Pi ∈

#»
P }

consIfcs(Π,∆, N,
#»
P )

ConsistentRestArgs
∀m . ∃x, y . ∀Pi ∈

#»
P . Pi = C< >

and m ∈ dom(methΠ,Pi)
or m ∈ dom(imethΠ,∆,Pi)

⇒ numArgs(Π, m, C) = (x, y)

consRestArgs(Π,∆,
#»
P )

TMethod
Π contains class C<

#                 »

β ext P> ext Q impl
#»
R { · · · } this /∈ #»x

#»x distinct
#                 »

Π,∆ ` N Π,∆ ` T Γ = { #      »
x : S, this : C<

#»

β >} Π,∆, Γ ` e : U

U <:Π∆ T ∆ = {
#                  »

α : (N,ff),
#                  »

β : (P,ff)} override(Π,∆, m, Q, <
#                 »
α ext N>

#»
S → T)

∀Ri ∈
#»
R .

#                 »

Π,∆ ` S override(Π,∆, m, Ri, <
#                 »
α ext N>

#»
S → T)

Π, C ` <
#                 »
α ext N> T m(

#    »
S x) { e }

TMethSig
Π contains ifc C<

#                 »

β ext P, γ ext R...> ext
#»
Q · · ·

∆ = {
#                  »

α : (N,ff),
#                  »

β : (P,ff), γ : (R, tt)} #»x all distinct
#                 »

Π,∆ ` S Π,∆ ` T
#                 »

Π,∆ ` N this /∈ #»x ∀Qi ∈
#»
Q . override(Π,∆, m, Qi, <

#                 »
α ext N>

#»
S , γ... → T)

Π, C ` <
#                 »
α ext N> T m(

#    »
S x, γ...)

Override
∀MT′ . (∃ #»x , e .methΠ,N(m) = (MT′, #»x , e) or imethΠ,∆,N(m) = MT

′)⇒ MT <:Π∆′ MT
′

where MT = <
#                 »
α ext P> · · · and ∆′ = {

#                  »

α : (P,ff)}
override(Π,∆, m, N, MT)

Fig. 12. FlexiJava: well-typed definitions



Lemma 1 (Subject Reduction). If ` Π : U and Π,∆, Γ ` e : T and Π `
e →FXJ e′, then either e′ is an error configuration or Π,∆, Γ ` e′ : S, where
S <:Π∆ T.

Proof: case analysis on the reduction Π ` e →FXJ e′. Proving the case for
R-Call requires lemma 3, below.

Lemma 2 (Progress). If

– ` Π : U and
– Π,∆, ∅ ` e : T,

then either

– e is a value, or
– Π ` e→FXJ e′, where e′ closed, or
– Π ` e→FXJ error: bad cast.

Proof: Assume e is not a value. Since e is closed, a unique decomposition lemma
(not included) guarantees the existence of a unique context E and redex r such
that e = E [r]. The proof then proceeds by case analysis on r.

Lemma 3 (Method Typing). If ` Π : W and

– methΠ,C< #»
T >(m) = (< #                 »

α ext P>
#»
U → U0,

#»x , e), and
– Π,∆ ` C< #»

T>, and
–

#                 »

Π,∆ ` V, and
–

#                           »

V <:Π∆ σ(P), where σ(P) = [
#     »

V/α]P,

then there exists some type N such that

– C<
#»
T> <:Π∆ N, and

– Π,∆ ` N, and
– Π,∆, {

#              »

x : σ(U), this : N} ` e : S, and
– S <:Π∆ σ(U0).

Proof: Use an induction on derivation of methΠ,C< #»
T >(m), with the observation

that if C<
#»
T> is well-formed and extends D<

#»
U> in a well-typed program, then

Π,∆ ` D< #»
U>.

Also we demonstrate that our proposed extension does not change the be-
havior of existing IJ programs.

Theorem 3 (Backward Compatibility with IJ). If `IJ Π : T, then `FXJ

Π : T. Further, for all IJ expressions e and e′, Π ` e →IJ e′ if and only if
Π ` e→FXJ e′.

Proof: The proof uses the fact that FlexiJava’s type system and operational se-
mantics are conservative extensions of IJ’s, allowing for the fact that FlexiJava’s
∆, methΠ,C< #»

T>, imethΠ,∆,C< #»
T>, and <:Π∆ are also conservative extensions.



class Pair<X, Y> {

X fst;

Y snd;

}

class Unit<> { }

Fig. 13. The Pair and Unit classes

5 Translating FlexiJava back to a Model of Java

To show that FlexiJava is compatible with existing models of the Java language,
we provide a translation from FlexiJava to IJ. We prove that this translation
preserves typing and run-time behavior.

5.1 Overview of the Translation

The translation requires two predefined IJ classes (figure 13). With these classes,
a programmer can construct arbitrary tree structures, though the translation
uses them only to build lists where a Unit instance, not null, signifies the end
of the list. These lists, however, have two important properties: they are het-
erogeneous, and their types define their length4 and the types of their elements
precisely. Therefore, a program can extract a value from a Pair structure, how-
ever deeply nested, without worrying about reaching the end of the tree or having
to cast the result to the desired type.

The translation uses these structures in the following ways:

1. It transforms each variable-arity interface into one that accepts a single
required type argument in place of the original rest argument.

2. It replaces any occurrences of the rest argument in the interface’s method
signatures or ext clauses with the new single type argument.

3. It modifies any occurrences of the interface type to assemble their optional
type arguments into a list structure as described above.

4. It modifies any methods that override or implement a method modified in
point 2 above so that they accept the same argument signature and then
decompose that structure in their bodies.

5. Finally, it modifies any calls to methods affected by points 2 or 4 above so
that they assemble their arguments into a list structure.

Figure 14 presents the translation of an illustrative example, the Function
interface and the Factorial class from section 3.1. In our model, we use let
expressions to represent local variables, such as those in Fact.apply.

Finally, note that our translation is defined only on well-typed FlexiJava
programs.
4 Technically, it provides an upper bound because a programmer could always assign
null to snd. Our translation uses the classes only as intended, so the type precisely
encodes the length and the elements’ types.



ifc Function<R ext Object, D ext Object> {

R apply(D);

}

class Fact impl Function<Integer, Pair<Integer, Unit>> {

Integer apply(Pair<Integer, Unit> args) {

Integer n = args.fst;

if (n == 0)

return 1;

else

return n * this.apply(new Pair<Integer, Unit>(n - 1, new Unit()));

}

}

Fig. 14. Translation example: Function and Factorial

5.2 The Formal Translation

Our translation is defined by a series of inference rules that define the following
translation relations:

` Π 7→ Π ′ Program Π translates to Π ′

Π ` T 7→ T′ Program Π translates type T to T′

Π,∆, Γ ` e 7→ e′ Expression e translates to e′ in the given context

Figure 15 contains selected inference rules that define the translation pro-
cess. The missing rules are straightforward variations on those presented; the
translation rules for expressions generally recur on subexpressions and subtypes
without making any changes.

Some care is required to translate interface types of the form C<
#»
T, α...>.

Consider the following example:

interface A<X, Y...> extends B<X, Y...> { · · · }

The translation of A accepts two type arguments, the second of which must be
a pair structure as discussed above. If B expects one fixed argument, then the
translation of the type application is trivial: A simply passes its second argument
along to B without modifications. If, however, B does not expect any fixed ar-
guments but only a rest argument, then the translation of this type application
must construct a new type that includes X as well as all of the types supplied
for Y.

Note: Had we used a tuple class, rather than a sequence of nested pairs, to
implement these varargs, this translation of A would have been impossible, as
there would be no way to decompose and then reconstruct this tuple in the
context above. Our list structure makes this trivial, however; we simply cons the



TransClass
#                        »

Π ` N 7→ N
′ Π ` P 7→ P

′ #                        »

Π ` Q 7→ Q
′ #                        »

Π ` T 7→ T
′ #                              »

Π, C ` M 7→ M
′

Π ` class C<
#                 »
α ext N> ext P impl

#»
Q {

#       »
T f;

#»
M } 7→

class C<
#                  »

α ext N
′
> ext P

′
impl

#»

Q
′
{

#         »

T
′
f;

#»

M
′
}

TransFlexIfc
#                        »

Π ` N 7→ N
′ #                        »

Π ` Q 7→ Q
′ #                                    »

Π, C ` MS 7→ MS
′

Π ` ifc C<
#                 »
α ext N, β ext P...> ext

#»
Q {

# »
MS } 7→

ifc C<
#                  »

α ext N
′
, β ext Any> ext

#»

Q
′
{

#  »

MS
′
}

TransMethRest

Π contains class C<
#                 »

β ext P> · · ·
#                        »

Π ` N 7→ N
′

Π ` T0 7→ T
′
0

#                        »

Π ` T 7→ T
′ ∆ = {

#                  »

α : (N,ff),
#                  »

β : (P,ff)} Γ = { #      »
x : T}

Π,∆, Γ ` e 7→ e
′ numArgs(Π, m, C) = (n, 1) (

#»
U ,

#»
V ) = splitAt(

#»

T
′, n)

( #»y , #»z ) = splitAt( #»x , n) z
′ /∈ #»y (W, e′′) = mkLet(

#»
V , #»z , z′, e′)

Π, C ` <
#                 »
α ext N>T0 m(

#    »
T x) { e } 7→ <

#                  »

α ext N
′
>T
′
0 m(

#    »
U y, W z

′
) { e

′′
}

TransFlexSignature
#                        »

Π ` N 7→ N
′ Π ` T0 7→ T

′
0

#                        »

Π ` T 7→ T
′

rest /∈ #»x

Π, C ` <
#                 »
α ext N> T0 m(

#    »
T x, β ...) 7→ <

#                  »

α ext N
′
> T

′
0 m(

#     »

T
′
x, β rest)

TypeListEmpty
typeList(•) = Unit

TransTAppRest
Π contains ifc C<

#                 »
α ext N, β ext Q ...> · · ·

#                        »

Π ` T 7→ T
′ (

#»
U ,

#»
V ) = splitAt(

#»

T
′, #( #»α))

Π ` C<
#»
T > 7→ C<

#»
U , typeList(

#»
V )>

TypeList′Empty
typeList ′(•;β) = β

TransTAppFlex
Π contains ifc C<

#                 »
α ext N, γ ext Q ...> · · ·

#                        »

Π ` T 7→ T
′ (

#»
U ,

#»
V ) = splitAt(

#»

T
′, #( #»α))

Π ` C<
#»
T , β...> 7→ C<

#»
U , typeList ′(

#»
V ;β)>

TypeList
typeList(

#»
T ) = U

typeList((T0,
#»
T )) = Pair<T0, U>

TypeList′

typeList ′(
#»
T ;β) = U

typeList ′((T0,
#»
T );β) = Pair<T0, U>

TransCallRest
Π,∆, Γ ` e0 7→ e

′
0 Π,∆, Γ ` e0 : T

T = C<· · ·>
#                        »

Π ` V 7→ V
′ #                                       »

Π,∆, Γ ` e 7→ e
′ numArgs(Π, m, C) = (n, 1)

methΠ,T(m) = (<
#                 »
α ext N>

#»
U → U0, , ) or imethΠ,∆,T(m) = <

#                 »
α ext N>

#»
U → U0

#                        »

Π ` U 7→ U
′ ( #»g ,

#»
h ) = splitAt( #»e , n) ( ,

#»
W ) = splitAt(

#»

U
′, n)

Π,∆, Γ ` e0.m<
#»
V >( #»e ) 7→ e

′
0.m<

#»

V
′
>( #»g , pkgArgs(

#»
W ,

#»
h ))

Fig. 15. Selected translation rules



new type X onto the front of the list as implemented in the TransTAppRest
rule.

As a consequence of the TransCallRest and PkgArgs rules, the trans-
lation of an affected method-call expression must state the types of some of its
arguments multiple times; for example, if f implements
Function<Integer, Integer, String>, then a call to f.apply would translate
as follows:

f.apply(new Pair<Integer, Pair<String, Unit>>
(3, new Pair<String, Unit>

("foo", new Unit())))

Each value appears exactly once, but for each Pair type that appears in this
expression, its tail must also appear one additional time. As a result, the length of
such method-call expressions increases by an amount that varies quadratically
with the number of types supplied to the relevant rest argument. Thus the
resulting source file may grow larger than the original but in a controlled fashion.
We leave it as an open problem to find a correct translation that requires linear
space.

5.3 Structural Properties of the Translation

This translation is correct with respect to the static semantics of FlexiJava.

Theorem 4 (Translation Preserves Typing). If `FXJ Π : T and ` Π 7→ Π ′

and Π ` T 7→ T′, then `IJ Π
′ : T′.

Proof: The proof follows the derivation of `FXJ Π : T; it relies heavily on
supplementary lemmas. These lemmas are not stated here for space reasons, but
they establish that translation preserves many other properties of the program,
including the following:

– expression typing;
– well-formedness of definitions, methods, signatures, types;
– interface consistency; and
– subtyping.

For many of these lemmas, it is also necessary to translate the types that appear
in ∆ and Γ . This in turn requires a lemma that states that translation and type
substitution commute.

Lemma 4 (Commutativity of Translation and Type Substitution). If
Π,∆ ` T and

– Π,∆ ` N and
–

#                 »

Π,∆ ` U and
– Π ` T 7→ T′ and
– Π ` N 7→ N′ and



–
#                        »

Π ` U 7→ U′,

then all of the following hold:

– Π ` [T/α]N 7→ [T′/α]N′, and
– Π ` [ #»

U /β...]N 7→ [
#»

U′/β]N′, and
– Π ` [ #»

U , γ.../β...]N 7→ [typeList′(
#»

U′; γ)/β]N′

where α is not in T and β is not in #»
U, γ.

Proof of Lemma 4: Induction on Π,∆ ` N.
Finally, we establish that the translation preserves the behavior of the pro-

gram. Informally, this result states that performing a single reduction step and
then translating provides the same result as translating then performing possibly
many reduction steps.

Theorem 5 (Translation Preserves Behavior). Let Π, e be a FlexiJava
program and expression such that ` Π : S and

Π,∆, Γ ` e : T

for some well-formed ∆, Γ , S and T. Let Π ′ and d be an IJ program and expres-
sion such that ` Π 7→ Π ′ and Π,∆, Γ ` e 7→ d.

If Π ` e→FXJ e′, then Π ′ ` d→∗IJ d′ and Π,∆, Γ ` e′ 7→ d′.

Proof: Induction on Π,∆, Γ ` e : T. Multiple reductions in IJ are required
when e is a method call expression that invokes a method whose translation
involves a list argument. First, several reductions may be necessary to assemble
the list structure, then the actual method call reduction takes place, and finally
several more reductions occur to reduce the let expressions introduced by the
translation. The result of these last reductions is equivalent to the translation of
e′.

Because we can exploit the heterogeneity of the constructed “lists,” our trans-
lation algorithm does not add any type-cast expressions to the program, unlike
the “erasure” translation from FGJ to FJ. This dramatically simplifies the state-
ment and proof of this theorem, as we do not have to demonstrate that these
additional casts cannot fail at run time.

6 From a Model to a Full Language

Scaling FlexiJava to the full Java 1.5 programming language requires that we
address four concerns: type erasure, method overloading, separate compilation,
and library compatibility.

First, we must handle the fact that our translation using the Pair and Unit
classes, which is designed for languages without type erasure, can lead to prob-
lems under Java’s type erasure rules. Instead of the translation in the previous
section, we could generate new interfaces by-need. New interfaces would need to



be generated only when a different number of type arguments were used. This
would result in Scala-like versions of the interface on the back-end but without
restricting instantiations to a maximum number of generic arguments.

Second, we need to address overloading. A generalization of Java’s cur-
rent overload resolution mechanism should suffice. Consider the following Java
classes:

class Overloaded<X extends Object> {

void m(X arg) { ... }

void m(String s) { ... }

}

class Client {

void m() {

Overloaded<String> ov =

new Overloaded<String>();

ov.m("Hello, world!");

}

}

Java compiles Overloaded without a warning, even though there exists a
choice for X that causes an overload conflict. Java also allows the specialization
of Overloaded at String, even though this specifically results in conflicting
methods. Instead, Java delays the error until it is actually significant: it signals
an error at the invocation of ov.m, because the overload resolution is ambiguous.
We conjecture that the obvious generalization to overloading with variable arity
generics suffices.

Third, existing separate compilation mechanisms continue to work with Flexi-
Java. Type-checking a FlexiJava class or interface requires the definitions of all
supertypes and the definitions of all types used within the body of the definition.
Translating a FlexiJava class or interface down to Java requires no additional
information. As this is exactly the same information that is required to compile
a Java class or interface, existing separate compilation techniques scale directly
to FlexiJava.

Fourth, by “library compatibility” we mean the ability to use a pre-existing
Java library—without recompilation—in a FlexiJava program. In this context,
the library cannot refer to any classes or interfaces defined in the FlexiJava
program (ignoring reflection), but we must still address whether the FlexiJava
program can safely pass one of its objects to the Java library for use via a
callback.

For a concrete example, assume that the library accepts callback objects
that implement ISubscriber, an interface from the library that specifies a
notify method. Furthermore, imagine that the FlexiJava program contains a
Subscriber class that implements the ISubscriber interface. The program
can now register an instance of the Subscriber class with some library ob-
ject. After all, if the FlexiJava program is well-typed, then Subscriber must
implement ISubscriber, meaning the FlexiJava type system ensures that the
method notify in Subscriber does not implement or override a method with a



rest argument. Therefore, the translation does not affect the external interface
of notify at all, so the linking succeeds. notify may refer to methods that
are affected by the translation internally, but this is not visible to the Java 1.5
library.

7 Future Work and Conclusion

The paper introduces the idea of variable-arity generic interfaces in the context
of Java. It shows how object-oriented languages can benefit from this type-level
abstraction; that it is type-safe; and that it is compatible with existing languages.

In the future, we wish to study three potential extensions of this work. First,
we could allow the programmer to require a method per argument. In a language
such as C# with variable-arity parameters for interfaces, design patterns such as
the Visitor pattern can be encoded at the type level:

interface Visitor<R, B...> {

R visit(B x);

...

}

Then we could write the following Visitor class for a binary tree data struc-
ture:

class TreeCounter<A> : Visitor<int, Leaf<A>, Branch<A>> {

int visit(Leaf<A> x) { ___ }

int visit(Branch<A> x) { ___ }

}

Second, it ought to be possible to introduce type-level rest arguments via
method signatures in addition to interfaces:

interface F<> {

<T ...> S m(___, T x);

}

Unfortunately, the FlexiJava model cannot easily accommodate this extension.
Third, the application of variable-arity polymorphism to C#’s delegates also

shows promise. Delegates in C# are essentially abstract method signatures for
closures—in other words, light-weight interfaces. We therefore intend to study a
model that incorporates delegates as well as interfaces.

Acknowledgments

We thank Gilad Bracha, formerly of Sun Microsystems, for his help in clarifying
the consistency requirements for overriding methods in an interface.



References

1. Gregor, D., Järvi, J.: Variadic templates for C++. In: SAC ’07: Proceedings of
the 2007 ACM Symposium on Applied Computing, New York, ACM Press (2007)
1101–1108

2. Hall, D.A.: Java bug report 6261297. Available from http://bugs.sun.com/

bugdatabase/view_bug.do?bug_id=6261279 (2005)
3. Odersky, M., et al.: Programming in Scala. Available from http://scala.epfl.

ch/docu/index.html (2004)
4. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification.

third edn. Addison-Wesley (2005)
5. ECMA: Standard ECMA-334: C# language specification. Available at http:

//www.ecma-international.org/publications/files/ecma-st/ECMA-334.pdf

(2002)
6. Kennedy, A., Syme, D.: Design and implementation of generics for the .NET Com-

mon Language Runtime. In: PLDI ’01: Proceedings of the ACM SIGPLAN 2001
Conference on Programming Language Design and Implementation, New York,
ACM Press (2001) 1–12

7. Barendregt, H.P.: Introduction to the lambda calculus. Nieuw Archief voor
Wisenkunde 2 (1984) 337–372

8. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3) (2001) 396–450

9. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics
for classes and mixins. In: Formal Syntax and Semantics of Java. Volume 1523 of
Springer Lecture Notes in Computer Science. Springer-Verlag (1999) 241–269

10. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information
and Computation 115(1) (1994) 38–94


