
B U I L D I N G D O M A I N - S P E C I F I C L A N G U A G E S
W I T H M U LT I - L A N G U A G E M A C R O S

M I C H A E L B A L L A N T Y N E

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

Khoury College of Computer Sciences
Northeastern University
Boston, Massachusetts

2025

August 17 2025

18 August, 2025

18 August, 2025

18-AUG-2025

8/20/25

A B S T R A C T

Macros are commonly used to implement domain-specific languages (DSLs).
However, macro technology was originally designed for implementing syntactic
sugar, not DSLs. As a consequence, it can be difficult for macro-based DSL
implementations to provide static semantics, optimizing compilation, or specialized
IDE services. Protecting the invariants of the DSL where it interacts with the host
also poses challenges. My dissertation confirms that a macro system specifically
designed around the needs of DSLs can alleviate these problems. In particular,
such a macro system can adopt the structure of a multi-language semantics, with
separate host and DSL syntaxes connected via explicit boundary forms to mediate
the interaction between languages. I have implemented such a multi-language-
oriented macro system as a layer on top of Racket’s conventional macros. The two
kinds of macros work well together, resulting in DSL implementations that support
a combination of optimizing compilation, protected host-language interaction, and
extensibility.

iii

A C K N O W L E D G M E N T S

My chief thanks is to my advisor Matthias Felleisen, whose patience and adapt-
ability got me through the long process of completing a PhD. I have benefitted
immensely from the seriousness with which he approaches all aspects of being an
academic—research and teaching with a vision, mentoring with long-term commit-
ment, and building a research community that can sustain the work. I am grateful to
my committee members Amal Ahmed, David Thrane Christiansen, Matthew Flatt,
Arjun Guha, and Niko Matsakis for their extensive feedback and suggestions for
relating my work to the broader context. Thanks also to my first PhD advisor Matt
Might for starting me down the path by introducing me to the field and providing
funding that allowed me to explore my interests.

Turning the ideas in this dissertation into reality has been so much more en-
joyable with collaborators who see the same possibilities. Thank you to Mike
Delmonaco, Jason Hemann, Mitch Gamberg, Cameron Moy, Alexis King, Sid-
dhartha Kasivajhula, Dominik Pantůček, Nada Amin, Will Byrd, Ari Prakash, Zack
Eisbach, Andrey Piterkin, and Luke Jianu for believing in and co-creating these
ideas with me. I also had the pleasure of working with Leif Andersen, Stephen
Chang, William Hatch and Greg Rosenblatt on other fascinating projects that
sustained my interest in programming languages.

Finally, thanks to my partner Jeanne-Marie, my friends Corey, Di, Logan, Celeste,
Hyeyoung, and Adair, and my parents for the many kayaking trips, meals, hikes,
baked goods, philosophical conversations, and everything else that kept me going.

v

C O N T E N T S

I Design
1 Introduction 3

1.1 Macros: An Imperfect Match for Language-Oriented Program-
ming 3

1.2 Thesis 4
1.3 Contributions 6

2 Programming with Multi-Language Macros 9
2.1 Declaring a Multi-Language DSL 9

2.1.1 A DSL Specification 10
2.1.2 Programming in the Resulting DSL 12

2.2 Extending a Multi-Language DSL 13
2.3 Compiling a Multi-Language DSL 14

2.3.1 Inserting Boundaries 15
2.3.2 Optimizing in a Multi-Language 15

3 Design Decisions 17
3.1 DSL Fragments as Compilation Units Linked by the Host 17
3.2 A Lightweight Metalanguage for Syntax and Binding 19
3.3 A Language Workbench as a Library 20
3.4 DSL Extensibility Via Macros and Host Interoperation 21
3.5 Integrating Conventional and Multi-Language Macros 22

4 Prior Work 25
4.1 Macros 25
4.2 Language Workbenches 27
4.3 Binding Specification Languages 28
4.4 Multi-language Semantics and Language Boundaries 29
4.5 Embedding and Extraction 30

II Implementation
5 A Review of Hygienic Expansion with Binding as Sets of Scopes 37

5.1 Binding as Sets of Scopes by Example 37
5.2 A Recap of the Core Model of Binding as Sets of Scopes 39
5.3 An API for Hygienic Expansion 40

6 Hygienic Expansion for syntax-spec DSLs 43
6.1 Separate Scope and Binding 48
6.2 Nesting Binding 49

7 Layering syntax-spec atop Racket’s Conventional Macro System 53
7.1 The Generated DSL Expander 53
7.2 Integrating with Racket via a Reflective API 56

vii

viii C O N T E N T S

8 Multi-Language Expansion: Integrating Host and DSL 59
8.1 Hygiene for DSL Compilers 59
8.2 Host Subexpressions and Cross-Language References 63
8.3 Integrating with Host Definition Contexts 65
8.4 Persisting Static Data in Host Modules 68
8.5 Recording Information for the IDE 70

9 Reflection: Hygienic Expansion and Binding Specifications 73
9.1 Macro extensibility and expansion order 73
9.2 Hygiene 74

III Applications and Evaluation
10 The miniKanren Optimizing Compiler 81

10.1 Extension and Mixing Like a Shallow Embedding 81
10.1.1 Extensibility 81
10.1.2 Mixing DSL and Host-Language Code 82
10.1.3 Host Code in DSL Extensions 85

10.2 Optimizing Like a Deep Embedding 87
10.2.1 Optimizations for miniKanren 87
10.2.2 Extensions Get Optimized Too 88
10.2.3 Optimizing at the Boundary with Racket 90
10.2.4 Benchmarks and Results 91

11 Parsing Expression Grammars 95
11.1 PEGs as a Multi-Language DSL 95

11.1.1 PEG Syntax as an Extension to Racket 95
11.1.2 PEG Static Semantics 97
11.1.3 PEG Compilation and Optimization 98
11.1.4 PEG Macros 98

11.2 Implementing the PEG DSL with syntax-spec 99
11.2.1 Nesting Binding for Parse Variables 99
11.2.2 The Left-Recursion Check 101
11.2.3 Limitations of syntax-spec 104

11.3 The Power that Comes With Extensible DSLs 104
11.3.1 Layering DSLs 104
11.3.2 Integrating with Other Components 107

12 A Plethora of DSLs 111
12.1 State machines 111
12.2 Classes 112
12.3 Command-line argument parsing 113
12.4 TinyHDL 113
12.5 Multi-Stage miniKanren 114

13 Initial Community Adoption 117
13.1 Domain-Specific Contract Languages 117
13.2 Qi 118

C O N T E N T S ix

13.3 Lens Match 119
13.4 Logical Student Language 120
13.5 mini-Dusa 121

14 Evaluation 125
14.1 Expressiveness and Utility 125
14.2 Concision 128
14.3 Expansion Performance 130

IV Reflection
15 Looking Back 135
16 Looking Forward 137

16.1 A Richer Connection to the IDE 137
16.2 Replacing Conventional Macros Altogether 138
16.3 DSLs for Domain Experts 139
16.4 Reasoning and Verification 140
16.5 Beyond the Racket VM 140
16.6 Scaling Up to Mainstream Host Languages 141

Bibliography 145
A Syntax-Spec Documentation 157

A.1 Tutorial 158
A.1.1 Basic Tutorial: State Machine Language 158
A.1.2 Advanced Tutorial: Simply Typed Lambda Calculus 174
A.1.3 Advanced Tutorial: A Compiler with Transformative Passes 188
A.1.4 Advanced Tutorial: An Interpreted Language 196

A.2 Reference 203
A.2.1 Specifying Languages 203
A.2.2 Compiling Languages 217
A.2.3 Release Notes 227

Part I

D E S I G N

1
I N T R O D U C T I O N

1.1 M AC RO S : A N I M P E R F E C T M AT C H F O R L A N G UAG E - O R I E N T E D

P RO G R A M M I N G

Racket (Flatt and PLT, 2010) is an extensible language designed to support
language-oriented programming (LOP). Programming in a language-oriented style
means solving each part of a programming task in a domain-specific language
(DSL) suited to that part of the task (Felleisen et al., 2018; Ward, 1994). The
overall program stitches together the various pieces via their connection to a
general-purpose programming language. Racket supports this objective via a macro
system that allows Racket programmers to define extensions to the syntax of the
language.

To support LOP, each DSL needs to provide its special domain-specific advan-
tages while also integrating smoothly with the host language to enable composition
of the overall program. The domain-specific advantages of a DSL may come from
a specialized syntax, static semantics, runtime execution model, optimizing com-
piler, or a synthesis of all of these. Thus, it is essential that the implementation
technique for such DSLs allow DSL creators to fully realize these attributes of their
intended DSL design. The degree of intermixing of DSL and host code as well as
runtime protection at the boundary between languages are key issues. When DSL
and host code can be intermixed arbitrarily, DSL and host-language code become
inseparable, and it is not possible to provide domain-specific static semantics or
optimizations. On the other hand, isolating DSL and host code in separate modules
limits interoperation between the DSL and host language such that programmers
cannot take advantage of their combined expressive power. Similarly, allowing
host-language code full access to DSL runtime data prevents the DSL from main-
taining desired invariants and equivalences, while completely isolating such data
forbids useful interactions.

Previous work on multi-language semantics (Matthews and Findler, 2007) sug-
gests that DSL designers should have precise control of the granularity of interac-
tion. In a multi-language semantics, the grammar and semantics of each language
are separately defined, and then connected at specific points in their grammars
by explicit boundary forms. The boundary forms provide a hook for translating
the static semantics and runtime values between languages, and for installing pro-
tective runtime contracts. The choice of locations and semantics of the boundary
forms allows DSL designers to carefully control the trade-off between flexible
combination of languages on the one hand and analytic and transformative power
afforded to a DSL compiler on the other.

3

4 I N T RO D U C T I O N

Unfortunately, existing macro systems do not align with this multi-language
concept. Racket’s macro system is primarily designed around the needs of defining
syntactic sugar (Felleisen, 1990; Landin, 1964), not the needs of DSLs as multi-
language extensions. Macros normally define individual syntactic forms, and all
belong to Racket’s singular “expression or definition” grammar non-terminal. For
a DSL defined in this way, the compilation strategy must consider individual forms
in isolation and relegate any enforcement of abstraction boundaries to run-time
checks. Considering the individual forms of a language separately also makes it
difficult to implement a custom static semantics for the DSL or an optimizing
compiler.

Further, the key technologies in the macro system are tailored to the individual-
form case. The hygienic macro expansion provided by Racket’s “Binding as Sets
of Scopes” (Flatt, 2016a) approach assumes that the binding structure of a macro-
defined syntactic form is defined by the binding structure of the Racket code to
which the macro expands. This approach works well for syntactic sugar, but not
for complex optimizing compilers that need to reflect on binding structure and
may eliminate bindings and references during compilation. Similarly, the syntax-
parse pattern matching language (Culpepper, 2012) works well for defining the
syntax of an individual form, but does not provide a view of the entire grammatical
structure of a DSL.

It is possible to simulate multi-language structure using Racket’s tools by creat-
ing macros that accept as their syntax an entire DSL fragment. However, the macro
system then lacks an understanding of the internal structure of such fragments,
such as binding information. This poses a problem when integrating with other
host-language syntax embedded within the DSL fragment. The DSL creator must
resort to a variety of complicated patterns to communicate information about the
DSL syntax to the host-language macro expander (Flatt et al., 2012). Such patterns
indicate a lack of expressive power or, conversely, a need for linguistic support.

1.2 T H E S I S

The discussion in the preceding section suggests an opportunity to explore a new
multi-language macro system design, oriented from the beginning around the multi-
language structure that seems a good fit for language-oriented programming. Thus,
my thesis is:

Multi-language macros facilitate creating DSLs with static semantics
and optimizing compilation that simultaneously integrate fluidly with
their host language and admit syntactic extensions.

I support the thesis by presenting the syntax-spec multi-language macro system
together with DSLs built using the system and an evaluation that shows that these
DSLs realize the desired properties.

1.2 T H E S I S 5

My macro system design allows DSL creators to fully realize the domain-specific
benefits of their DSL design while also integrating the DSL as tightly as desired
with the host language. DSL designs may realize domain-specific benefits via
custom syntax, static semantics, compiler optimizations, or even via execution
on specialized hardware. Thus, the first primary goal of a multi-language macro
system is to equip DSL creators with enough power in each of these aspects to
allow them to realize their DSL’s intended benefit. Creating parsers, static checkers,
and optimizing compilers are complex domain-specific tasks in their own right.
The area of language workbench research has identified useful metalanguages
such as parser generators (Souza Amorim and Visser, 2020), binding specifica-
tion languages (Keuchel, Weirich, and Schrijvers, 2016; Konat et al., 2013), and
type system specification DSLs (Antwerpen et al., 2018; Chang et al., 2019). A
multi-language macro system should support DSL creators by providing similar
metalanguages.

The second primary goal of a multi-language macro system is to enable DSLs
to benefit from integration with the host. At the most basic, this means allowing
DSL code to sit inside host code and host code to sit inside DSL code in the
ways specified by a multi-language design’s boundary forms. To interconnect these
mutually-embedded program fragments, the DSL and host implementations need
to integrate at each level: parsing, static semantic checking, and runtime semantics.
Of course, a DSL can only connect to the concepts that exist in the host language.
Racket uses S-expression syntax, so the natural way of describing the syntactic
connection would be via a tree grammar. Racket is untyped but statically scoped, so
the key point of static semantic interconnection would be binding structure. Thus, in
Racket, a multi-language macro system should provide declarative metalanguages
for specifying the tree grammar and binding structure in order to make integration
with the host simple. Finally, to connect the runtime semantics, the macro system
should allow insertion of runtime checks or value conversion at every point of
interaction with the host.

New language features face a long path towards widespread adoption. How-
ever, conventional macro systems are relatively widespread, and are available in
industrial languages including Clojure (Hickey, 2008), Elixir1, and Rust 2. These
existing macro systems suggest a point of leverage for adoption, prompting two
secondary goals:

1. A multi-language macro system should be implemented as a
layer on top of a conventional macro system.

2. Multi-language DSL definitions and conventional syntactic sugar
macros should coexist in a single system and work together.

Building a multi-language macro system as a layer on top of a conventional one
could provide a path towards easy adoption in existing languages. With such an

1 https://hexdocs.pm/elixir/macros.html

2 https://doc.rust-lang.org/reference/procedural-macros.html

https://hexdocs.pm/elixir/macros.html
https://doc.rust-lang.org/reference/procedural-macros.html

6 I N T RO D U C T I O N

implementation, the new macro system could be distributed as a library, decou-
pling its development from the host language. New users could begin creating
multi-language DSLs with a simple library import. Coexisting with conventional
macros may also aid in adoption by allowing DSL creators to migrate their DSL
implementations from conventional macros to multi-language ones as their DSL
becomes more complex. A combination of embedding techniques and conventional
macros works well for quick prototyping or for discovering a DSL design via
iterated abstraction over syntactic patterns. As the DSL design becomes clear, the
DSL creator could migrate their implementation to use a multi-language design to
enable optimizing compilation. Code from some of the conventional macros in the
prototype implementation would become part of the DSL compiler, while others
would remain as macros defining syntactic sugar over the DSL core language.

1.3 C O N T R I B U T I O N S

In response to the ideas of the preceding section, I have developed syntax-spec,
a metalanguage that extends Racket’s macro system to support multi-language
DSL definitions. This metalanguage makes multi-language structure explicit, uses
declarative specifications of grammar and binding structure to integrate with the
host expander, and provides services to support sophisticated DSL compilers. The
remainder of Part i of this dissertation demonstrates syntax-spec and discusses
its design and related work.

Leveraging the binding rules in DSL specifications to extend Racket’s hygienic
macro expansion to DSL syntax posed the most substantial technical challenge. I
developed a formal model of my approach to this integration in PLT Redex as a
blueprint to support adoption in future language designs. The first half of Part ii
presents this formal model.

While the model presents syntax-spec as an extension to Racket’s macro ex-
pander, the real implementation is actually built as a layer on top the existing
Racket system. The syntax-spec metalanguage compiles to DSL-specific macro
expanders that use a new library I developed atop Racket’s compile-time API (Bal-
lantyne, King, and Felleisen, 2020). This architecture allows syntax-spec to
evolve independently of Racket itself. It also suggests that syntax-spec-like
multi-language macro systems could be layered on top of other existing procedural
macro systems, requiring only limited extensions to the core expanders of those
languages. The second half of Part ii explains the details of this implementation
approach.

To explore the value of multi-language macros, I have developed seven DSLs in
syntax-spec and supported students and programmers in Racket’s open-source
community in implementing a further six DSLs. These DSL implementations
provide the basis to evaluate the syntax-spec design. My evaluation finds that
syntax-spec is expressive enough to support a range of DSL designs and that it
enables implementations that are substantially more concise than with prior low-

1.3 C O N T R I B U T I O N S 7

level techniques. However, it also reveals that my binding specification language
places certain restrictions on DSL design and that the current implementation
imposes penalties on the performance of macro expansion. Part iii presents these
applications and the evaluation.

While the syntax-spec system is specific to Racket, the design idea of a multi-
language macro system is potentially portable to other languages. However, the
capabilities of any such multi-language macro system layered atop another host’s
conventional macro system would depend on what facilities the host exposes via its
compile-time API. Some of the operations that the syntax-spec implementation
relies on are currently only available in Racket. Implementations in other languages
may also need to integrate with conventional lexical syntax and type systems.
Part iv considers these and other directions for future work.

2
P R O G R A M M I N G W I T H M U LT I - L A N G U A G E M A C R O S

This chapter demonstrates how programmers declare, extend, and compile multi-
language DSLs with syntax-spec, via the running example of an implementation
of the miniKanren (Byrd, 2009) constraint logic programming DSL. The syntax-
spec manual in Appendix A provides complete documentation for the system. The
content of this chapter is adapted from collaborative work with Mitch Gamburg
and Jason Hemann (Ballantyne, Gamburg, and Hemann, 2024).

Figure 2.1 shows the overall architecture of DSL implementations using syntax-
spec. Programmers write a declarative specification of their DSL in the syntax-
spec metalanguage. The syntax-spec system uses this specification to extend
the host macro expander’s understanding of syntax and binding structure to encom-
pass the entire host-DSL multi-language. This extended expander checks syntax,
expands macros, and provides IDE services. Macro expansion yields a program in
the core multi-language syntax combining the DSL and host language. The DSL
compiler is responsible for optimizing and compiling the DSL fragments of the
multi-language program into host-language code.

2.1 D E C L A R I N G A M U LT I - L A N G UAG E D S L

A syntax-spec DSL declaration consists of a grammar and boundary forms
connecting the DSL to Racket, both annotated with binding rules. Together with
these declarations, the programmer writes a DSL compiler with entry points for
each boundary form embedding the DSL in the host.

DSL
grammar

syntax-spec

expanderDSL program
and macros

DSL core + Racket
multi-language

optimizations

code gen
Racket with
DSL runtime
and contracts

IDE services

generates

informs

Figure 2.1: The syntax-spec architecture for realizing multi-language DSLs.

9

10 P RO G R A M M I N G W I T H M U LT I - L A N G UAG E M AC RO S

(binding-class term-variable)

(binding-class rel-name)

(nonterminal goal

(== t1:term t2:term)

(disj g:goal ...+)

(conj g:goal ...+)

(fresh1 (x:term-variable ...)

b:goal)

#:binding (scope (bind x) ... b)

(r:rel-name t:term ...+)

(GE e:racket-expr))

(nonterminal term

x:term-variable

(quote t:quoted)

(cons t1:term t2:term)

(TE e:racket-expr))

(nonterminal quoted

n:number

s:id

())

(host-interface/expression

(run n:racket-expr (q:term-variable)

g:goal)

#:binding (scope (bind q) g)

(compile-run #'n #'q #'g))

(host-interface/definition

(defrel (r:rel-name x:term-variable ...+)

g:goal)

#:binding [(export r)

(scope (bind x) ... g)]

#:lhs [#'r]

#:rhs [(compile-relation #'(x ...) #'g)])

(host-interface/expression

(EG g:goal)

(compile-expression-from-goal #'g))

(host-interface/expression

(ET:term)

(compile-expression-from-term #'t))

Figure 2.2: The declaration of the miniKanren core language in syntax-spec: grammar,
binding structure information (underlined) and boundary forms.

2.1.1 A DSL Specification

Figure 2.2 shows the syntax-spec declaration for the miniKanren DSL. This
DSL consists of goals representing logical expressions that a query should satisfy
and terms that are used in those expressions. Goals include equality constraints
(==), logical disjunction and conjunction (disj, conj), existential fresh variable
binding (fresh1), and relation application. Terms are cons-trees of numbers and
symbols. Thus, the declaration includes grammar nonterminal specifications for
goal expressions, term expressions, and quoted atoms in term expressions.

The boundary with Racket is defined in two parts: host-interface forms
embed miniKanren in Racket, and productions in the DSL grammar use racket-
expr to embed Racket in miniKanren. The host-interface forms include the
entry point for queries (run), relation definitions (defrel), and embeddings of
goals and terms in expressions (EG and ET). The definitions of host-interface
forms specify the position (expression or definition) in the Racket grammar
where miniKanren code may be embedded, together with a grammar production
for the boundary syntax. The body of each host-interface form includes an
invocation of the DSL compiler to generate Racket code from the fragment of
miniKanren code contained within the boundary.

The second part of the boundary with Racket is created by the TE and GE forms,
which embed Racket expressions in miniKanren terms and goals, respectively.
These multi-language boundary forms are named based on the syntax they occur
in and the syntax they contain—TE must appear in term position and contains an

2.1 D E C L A R I N G A M U LT I - L A N G UAG E D S L 11

#lang racket

(require minikanren simple-sqlite)

(define flights (sqlite-table [flightfrom flightto]))

(for ([row (download-flights-csv)])

(match row

[(list from to) (insert! flights from to)]))

(defrel (direct a b)

(GE (unify-results

(sqlite-query flights (list (ET a) (ET b)))

a b)))

(defrel (route origin destination path)

(disj

(conj (== origin destination) (== path '()))

(fresh (hop remainder)

(conj

(== path (cons (list origin hop) remainder))

(absento origin remainder)

(direct origin hop)

(route hop destination remainder)))))

(displayln (run 1 (q) (route "BOS" "SEA" q)))

Figure 2.3: A multi-language miniKanren program computing routes in an airline network
database.

expression. Their grammar productions use subforms annotated with the racket-
expr nonterminal to indicate that these positions should be processed by the
standard Racket expander. The TE and GE forms are useful for multi-language
programming when paired with their counterparts ET and EG to use a Racket
computation to construct a term or to select a goal to execute.

Beyond the grammar and boundary forms, a syntax-spec declaration also
specifies name binding rules. The syntax-spec system uses this binding structure
information to control the use of DSL names in host-language code, for hygienic
macro expansion, and for providing IDE services. Binding rules are indicated by
the #:binding keyword. In fresh1, the (scope (bind x) ... b) binding rule
indicates that the fresh names x ... are bound in a new scope and are visible in
the body goal b. In defrel, the export portion of the binding rule indicates that
the relation name is bound not in a new local scope, but in the scope surrounding
the defrel form itself. Above the grammars are the binding-class definitions.
These forms define the set of term variables and the set of relation names. These
classes make the syntax specification precise: a reference to a name is only valid if
it has the same class as the binding to which it resolves.

12 P RO G R A M M I N G W I T H M U LT I - L A N G UAG E M AC RO S

Figure 2.4: DrRacket editing the route relation. The edit cursor is on the fresh keyword,
so DrRacket shows the grammar of that syntactic form in the upper-right-hand
corner. It also shows the references corresponding to the binding of hop that is
highlighted by the mouse cursor.

2.1.2 Programming in the Resulting DSL

Figure 2.3 shows a program written in the miniKanren-Racket multi-language
implemented by the syntax-spec declaration of Figure 2.2. The task of the
program is to query a database of airline flight paths to compute routes with
layovers between an origin and a destination. The Racket portion of the program
creates a SQLite database table and fills it with data loaded from a CSV data source.
The miniKanren portion implements the graph search via a recursive specification
of the transitive closure of direct flights. The direct relation should be satisfied
for a pair of airports with a direct flight between them. Its implementation uses
Racket code via the multi-language boundary forms to query the database. The
route relation relates an origin airport, a destination airport, and a route between
them including layovers. It is defined as a logical disjunction between a reflexive
base case and a recursive case using direct. The absento constraint eliminates
cyclic paths.

The flight routes program illustrates several key benefits of a multi-language-
oriented macro system. First, the program uses DSL code where it is beneficial
(searching for a route based on a declarative specification) and host code where
needed to integrate with other components (SQLite). Second, explicit declaration
of the grammar and binding structure allows the syntax-spec expander to catch
syntax and binding errors and provide user-friendly error messages when the
combination of languages is used improperly. Third, as shown in Figure 2.4, the
same information allows the DrRacket IDE to understand the full program syntax.
This understanding allows the IDE to provide proper syntax highlighting, binding
structure information, and documentation excerpts. Finally, the checks imposed
by the explicit boundaries between languages allow the miniKanren compiler to
perform optimizations while ensuring that the observable behavior of the program
remains unchanged.

2.2 E X T E N D I N G A M U LT I - L A N G UAG E D S L 13

2.2 E X T E N D I N G A M U LT I - L A N G UAG E D S L

A multi-language-oriented macro system is primarily about creating new DSLs, but
those DSLs are themselves objects that can benefit from extension via conventional
macros. A DSL compiler benefits from a minimalist core language, while DSL
users benefit from a surface syntax with additional conveniences. A hygienic macro
system makes the elaboration from surface to core easy to define. Macros also allow
DSL users to add features, and in a multi-language, macros may use host-language
code in order to implement extensions that are impossible with DSL code alone.
Finally, macros can add syntax that integrates separately defined multi-language
DSLs.

(extension-class term-macro)

(extension-class goal-macro)

(nonterminal term #:allow-extension term-macro

#| elided |#)

(nonterminal goal #:allow-extension goal-macro

#| elided |#)

Figure 2.5: Additions to the syntax-spec declaration of miniKanren to allow macro
extension.

In syntax-spec, the DSL creator makes the language extensible by declaring
classes of extensions and indicating the grammatical positions where each class
is allowed. The extended syntax-spec declaration for miniKanren shown in Fig-
ure 2.5 has two extension classes called goal-macro and term-macro which allow
extensions to the goal and term nonterminals, respectively. The distinction be-
tween different classes of extensions enables the generated DSL-specific expander
to raise precise error messages.

The DSL creator and DSL users alike define macros in much the same way as
standard Racket macros. For example, the miniKanren implementor can define a
convenient fresh form that implicitly conjoins its body elements in addition to
binding logic variables with this macro:

(define-dsl-syntax fresh goal-macro

(syntax-parser

[(fresh (x:id ...+) g ...+)

#'(fresh1 (x ...) (conj g ...))]))

The define-dsl-syntax form is the syntax-spec analogue to Racket’s standard
define-syntax. It registers a syntax extension belonging to a particular extension
class, here goal-macro. The macro’s transformer can be defined using any of
Racket’s standard macro tools. This definition uses the syntax-parse pattern
matching and templating DSL (Culpepper, 2012).

14 P RO G R A M M I N G W I T H M U LT I - L A N G UAG E M AC RO S

#lang racket

(require minikanren minikanren/matche minikanren/facts)

(define-facts-table flights [flightfrom flightto]

#:initial-data (download-flights-csv))

(defrel (direct a b) (query-facts flights a b))

(defrel (route origin destination path)

(matche (origin destination path)

[(a a '())]

[(a b (cons (list a layover) remainder))

(absento a remainder)

(direct a layover)

(route layover b remainder)]))

Figure 2.6: Redefinitions of the direct and route relations using the query-facts and
matche extensions.

(define-extension query-facts goal-macro

(syntax-parser

[(_ table term ...)

#'(GE (unify-results

(sqlite-query table (list (ET term) ...))

term ...))]))

Figure 2.7: Implementation of the query-facts extension via expansion to multi-
language code.

The same mechanism allows DSL users to add non-standard features to miniKan-
ren. Figure 2.6 shows a revised version of the flight routes program using such
extensions. The cases of the route relation are defined using the matche pattern
matching extension, and the direct relation uses the query-facts database query
extension. The latter extension is sketched in Figure 2.7. It abstracts over the use
of host-language code to access an SQLite database seen in Figure 2.3. Interac-
tion with the host is hidden by the abstraction created by the macro, so to the
miniKanren user, query-facts looks just like any built-in part of the DSL.

2.3 C O M P I L I N G A M U LT I - L A N G UAG E D S L

The syntax-spec system provides several services to support DSL compilers,
specialized to their multi-language structure. It supports enforcing contracts at
DSL-host boundaries, communicating static information between DSL fragments,
and provides hygiene for DSL compilers.

2.3 C O M P I L I N G A M U LT I - L A N G UAG E D S L 15

2.3.1 Inserting Boundaries

Connecting the parts of a multi-language safely involves inserting value translations
or contracts at the boundaries. Matthews and Findler (2007) describe two ways
of relating the kinds of values found in the connected languages. For goals, the
miniKanren DSL uses a lump embedding: the boundary forms seal miniKanren
goals as opaque values that cannot be inspected by code on the Racket side of the
boundary. The only valid action Racket code can perform with these values is to
return them to miniKanren. For terms, miniKanren uses the natural embedding:
miniKanren terms such as lists and numbers translate to the equivalent data struc-
tures in Racket, while logic variables remain opaque. Many Racket values such as
vectors and structures have no translation to miniKanren term values, so passing
such values from Racket to miniKanren results in a contract error.

Inserting value translations or contract checks in the compilation of explicit
boundary forms such as GE and EG is a straightforward task for the DSL compiler.
Cross-language name references constitute another possible channel of communi-
cation between DSL and host. The syntax-spec system ensures that this channel
is protected by separating names belonging to different binding classes. By default,
host-language code is forbidden from referring to names associated with DSL
binding classes such as term-variable and rel-name declared in Figure 2.2.
Thus, a Racket expression is required to use an ET boundary form in order to access
a term variable. However, these explicit delimiters can make code overly verbose.

R E F E R E N C E C O M P I L E R S As an alternative, syntax-spec allows the DSL
creator to specify a reference compiler procedure as part of each binding class
declaration. The reference compiler is invoked for each cross-language name refer-
ence, and provides the DSL compiler the opportunity to insert value translations or
contracts automatically without requiring explicit boundary syntax. For example,
the full version of the miniKanren implementation specifies compile-ET as the
reference compiler for term variables:

(binding-class term-variable #:reference-compiler compile-ET)

The compile-ET function is the same compiler entry point as used to implement
the ET boundary form, and the code it generates includes the value translation from
terms to Racket values.

2.3.2 Optimizing in a Multi-Language

The explicit boundaries between the two languages enable the optimization passes
of the DSL compiler to rein in their transformations to account for the unknown be-
havior of the Racket code. An example of this behavior in the miniKanren compiler
arises in the occurs-check elimination optimization. An occurs check is generally
required to forbid cyclic terms and ensure soundness of deductions (Kowalski,

16 P RO G R A M M I N G W I T H M U LT I - L A N G UAG E M AC RO S

1979), but it is expensive: the cost is linear in the size of the run-time terms being
unified. Unification in miniKanren always includes the occurs check, but it is
unnecessary when the compiler can statically determine that the equation does not
introduce a cycle.

The occurs-check elimination pass is partially limited due to the host interaction
in this program:

(fresh (x y a b)

(== x (cons '5 '6))

(GE #| unknown racket code |#)

(== a b)

(== y x))

The miniKanren compiler needs to run before Racket code in boundary forms is
expanded and available for analysis. Therefore, the compiler must treat the body of
each such form as having potentially arbitrary behavior. The unknown Racket code
could access and, via an EG boundary, further constrain any of the variables in scope.
For example, it could assign the value (cons ’1 a) to the variable b. Thus, the
unification (== a b) still needs an occurs check to prevent a cyclic term. However,
the optimizer does not lose all information below the GE form. Code via the host
interface can only constrain logic variables by executing goals constructed via EG
and only in ways that accord with the usual miniKanren semantics. In particular
the optimizer can be sure that constraints are only extended in a monotonic way,
that the assignment to the variable x is unchanged, and hence an occurs check for
the unification (== y x) is unnecessary.

3
D E S I G N D E C I S I O N S

The goal of augmenting a general-purpose language with DSL syntax admits
a variety of designs. This chapter explains the choices made in the design of
syntax-spec, and how they support the desiderata introduced in Chapter 1. The
miniKanren logic programming DSL of Chapter 2 illustrates why these desiderata
matter. It realizes domain-specific syntax for terms and goals as well as optimizing
compilation that takes advantage of domain-specific properties such as monotonic-
ity of constraint assignments. At the same time, it allows escapes to Racket code for
computations or interaction with the outside world that does not fit within the DSL.
Crucially, the miniKanren implementation can be used by any Racket programmer
simply by importing a library; no additional tools are required. Realizing such
a combination of DSL features relies on the particular constellation of design
decisions realized in syntax-spec.

3.1 D S L F R AG M E N T S A S C O M P I L AT I O N U N I T S L I N K E D B Y T H E H O S T

Many properties addressed by static semantics and equivalences used in optimizing
compilers are nonlocal. Thus, realizing domain-specific static semantics and opti-
mizing compilation requires allowing a DSL compiler to analyze and transform
substantial chunks of syntax.

The syntax-spec design aims to provide the maximum flexibility to DSL
compiler authors with respect to the compilation of a contiguous chunk of DSL
syntax. Each fragment of DSL syntax, delimited by boundaries with the host,
is provided to the DSL compiler as a complete unit. The DSL compiler is just
a compile-time Racket function, so it may structure its internal compilation in
arbitrary ways using any of the means of abstraction available in Racket. A common
structure for the DSL compiler is a composition of functions, each of which
implements a compiler pass from one intermediate representation to another.

At the same time, programmers should be able to intermix DSL code with Racket
expressions and code written in other DSLs. This multi-language structure means
that the program fragments processed by a DSL compiler only constitute part of a
larger whole. The syntax-spec system provides tools to allow DSL compilers to
convey compile-time information between the processing of these separate frag-
ments. In particular, DSL compilers can use symbol tables (see Section 8.4 and
Appendix A.2.2.3) to associate DSL names with compile-time data, which can
then be accessed when processing references to those names, even when the bind-
ings and references appear in different host-language modules. This information
might represent a type in a static semantics or IR for a program fragment used to

17

18 D E S I G N D E C I S I O N S

implement an inlining optimization. As such, DSLs can re-use the Racket module
system and its separate compilation capabilities while still allowing compilation to
depend on non-local information.

The fragments of Racket code generated by the DSL compiler are linked with
programmer-written Racket code and code generated by other DSLs. Such linking
means that DSL compilers must be careful to generate code that maintains internal
invariants of the DSL implementation and the intended equivalences of the DSL
semantics. The syntax-spec macro system ensures that DSL compilers have the
opportunity to interpose at all boundaries between the DSL and host. Reference
compilers (Section 2.3.1) allow the compiler to insert an explicit boundary at the
implicit boundary formed by a cross-language name reference. Racket’s contract
system provides the tools to enforce properties at boundaries at run time.

In sum, the DSL compiler for a syntax-spec language gets to transform the
DSL portions of a program written in the multi-language composed of the DSL, host
language, and other DSLs. Using tools such as symbol tables, the DSL compiler can
communicate information between the compilation of these fragments. However,
the DSL compiler does not get the opportunity to transform portions of the program
that are not written in the DSL. Because syntax-spec does not impose a structure
on the internals of DSL compilers, it does not ensure that they are internally
extensible. Instead, syntax-spec assumes that the core language for each DSL is
fixed and provides extensibility on the front-end via macros (Section 3.4).

D E S I G N A LT E R N AT I V E S Rather than limit the DSL compiler to transforming
only the DSL portions of the program, I could have chosen a design in which
the DSL compiler can examine all parts of a module, including portions written
in the host language and in other DSLs. The MPS language workbench (Pech,
Shatalin, and Voelter, 2013), for example, takes this approach. MPS collects the
compiler passes associated with all the DSLs used within a module and runs them
all, in an order determined by ordering constraints associated with the passes.
Each pass can examine and transform the entire module. This approach allows
the compilation of a DSL form to depend on static analysis of surrounding host-
language code, or change the meaning of host-language code contained within
a DSL fragment. However, this non-local behavior also means that when using
multiple DSLs together, their compilers may interfere with each other and lead to
compilation failures. Even worse, one DSL compiler may break internal invariants
of the other DSL. By comparison, the syntax-spec multi-language approach
does not admit as much context-sensitive behavior, but ensures that each DSL can
defend its semantic properties.

Another alternative to the syntax-spec approach would be to more deeply
integrate the compilation processes of the host language and DSLs. For example,
an object-oriented approach as in Ziggurat (Fisher and Shivers, 2008) or an at-
tribute grammar approach as in Silver (Van Wyk et al., 2008) can allow language
extensions to integrate with static analysis and optimization passes of the host

3.2 A L I G H T W E I G H T M E TA L A N G UAG E F O R S Y N TA X A N D B I N D I N G 19

language. Such integration comes with several costs, however. Interfaces to the
internal structure of the host language compiler must be exposed to allow DSLs to
integrate with its analyses and optimizations. Exposing these interfaces means that
they cannot be changed without breaking backwards compatibility. Furthermore,
DSLs could implement these interfaces incorrectly in a way that compromises the
soundness of an analysis or optimization. By contrast, the syntax-spec approach
does not expose internals of the host language compiler and does not create op-
portunities to violate its invariants. The functional programming approach of a
compiler being a function from syntax to syntax is also the one most familiar to
Racket programmers.

3.2 A L I G H T W E I G H T M E TA L A N G UAG E F O R S Y N TA X A N D B I N D I N G

The syntax-spec design provides a metalanguage that addresses three critical
concerns: syntax, binding rules, and the interface with the host language. These
portions of a DSL implementation are the most uniform across DSLs, because their
structure relates as closely to the host language as to the domain of the language
being defined. This connection also means that these elements require the most
intricate integration with the host language implementation. The DSL implementa-
tion must interact with the host’s data representations of syntax, scope, and binding
environments. In an extensible language such as Racket, the processes of expansion
and name resolution interleave in complex ways. Thus, a DSL implementation
must invoke operations in the correct order to ensure that data is available when
needed. Abstracting over these parts of DSL implementation via syntax-spec

means that programmers need not be aware of the effectful operational details of
interaction with the host. Syntax and binding structure are also the most crucial
aspects of a DSL to integrate with the IDE in order to provide services such as
syntax highlighting, jump-to-definition, and rename refactorings. In a typed host
language, DSL type checkers would also need to be tightly coupled to the host
language implementation, making metalanguage support essential.

Programmers creating DSLs with syntax-spec implement the back-end com-
pilation to Racket using conventional procedural Racket code augmented by the
existing syntax-parse pattern matching and templating DSL (Culpepper, 2012).
Other technical domains in DSL implementation, such as static analysis and pro-
gram transformations, could potentially benefit from metalanguage support as well.
However, the specific needs of DSL implementations in these other areas vary,
and they are not as tightly coupled with the host-language implementation, so
they are less essential to integrate with syntax-spec. It is possible to use other
Racket metalanguages such as the nanopass framework (Keep and Dybvig, 2013)
in back-end compilers for DSLs defined in syntax-spec.

For those aspects of language creation that syntax-spec addresses, its design
emphasizes simplicity and familiarity. Language specifications in syntax-spec

take the form of tree grammars augmented with binding specifications. Grammars

20 D E S I G N D E C I S I O N S

are widely familiar, even to programmers without specific expertise in programming
languages. Similarly, the idea of expressing scoping structure as a tree of scopes
with associated bindings and references (or more generally, a graph) is relatively
approachable to novices.1 S-expressions and simple tree-structured scope are also
familiar to Racket programmers because they are used in the syntax and static
semantics of Racket itself.

D E S I G N A LT E R N AT I V E S An alternative design direction would have been
to aim for the expressive power needed to implement the widest-possible range
of DSL syntax and static semantics. The Spoofax language workbench (Kats and
Visser, 2010), for example, aims to capture as much PL theory and support the
widest variety of language definitions as possible. Their Statix (Antwerpen et al.,
2018) static-semantics specification language also uses scope graphs, but treats
scope graph nodes as first-class elements and integrates scope checking with type
checking. As a consequence, Statix can express a variety of binding structures that
syntax-spec cannot, such as the type-dependent scoping of method names in
languages with statically typed classes.

The ability to express a wide variety of DSL syntaxes and binding structures
is indeed valuable; however, syntax-spec aims to be a relatively small step
up on the learning curve from conventional macros to DSLs. Its design cannot
assume that all users are familiar with the theory of programming languages
or formalisms such as natural-deduction style inference rules as used in Statix.
Restricting expressivity to the forms of syntax and static semantics used in Racket
itself also helps programmers understand specifications in syntax-spec via their
knowledge of the host language. A further consequence is that DSLs created with
syntax-spec share a common structure, so users of a collection of such DSLs may
develop transferrable intuitions. These benefits make restricting the metalanguage’s
expressive power worthwhile.

3.3 A L A N G UAG E W O R K B E N C H A S A L I B R A RY

The syntax-spec macro system has much in common with language workbenches
such as Spoofax, but with a key difference: it is packaged as a library in a general-
purpose programming language. Language-oriented programming is not yet a
mainstream approach to designing programs. As such, to enable adoption, lan-
guage workbench tools need to be integrated into general-purpose programming
languages that programmers already use. To begin using syntax-spec, all that
Racket programmers need to do is install an additional library with the language’s
package manager and import the library in the module in which they are defining
their DSL. Bringing in the metalanguage has no more friction than bringing in

1 I used syntax-spec in an undergraduate course on DSL implementation, and students were able to
quickly understand the basics of binding rules.

3.4 D S L E X T E N S I B I L I T Y V I A M AC RO S A N D H O S T I N T E RO P E R AT I O N 21

a conventional library. Similarly, users of a DSL defined in syntax-spec install
and import the DSL just like a conventional runtime library. Crucially, potential
syntax-spec or DSL users do not need to change the build process for their
program or introduce a new IDE—changes which might create disruption for their
entire team. Avoiding these frictions means that programmers can incrementally
reap the benefits of language-oriented programming without incurring new costs.

The syntax-spec metalanguage is implemented as a library atop Racket’s
procedural macro system. This architecture decouples the development of syntax-
spec from the development of Racket itself. This is possible because Racket’s
procedural macro system allows macros to be implemented using arbitrary Racket
code, which can itself be generated by other macros. Thus, syntax-spec is im-
plemented as a macro that generates macros to implement the specified DSL. The
generated DSL implementation additionally relies on a relatively small reflec-
tive API provided by Racket’s macro expander that allows the DSL to integrate
with Racket’s expansion process (Section 5.3). This architecture means that only
additions to this underlying reflective API require changes to the core Racket
implementation. Other aspects of syntax-spec can evolve independently.

D E S I G N A LT E R N AT I V E S I could instead have worked with Racket’s devel-
opment team to implement syntax-spec as an extension to the language’s core
macro expander. However, I expect this approach would be difficult in language
ecosystems focused on concerns other than language-oriented programming. The
syntax-spec metalanguage is large, and it is unlikely that the development teams
for most general-purpose languages would be amenable to including such a system
in their core language specification and implementation. As such, the layering of
syntax-spec as a library on top of a smaller API provided by the host language
is a design choice that I anticipate to be important if the syntax-spec design is
ported to other host languages. With this approach, only a procedural macro system
and reflective API to the macro expander need to be built into the core language.
Procedural macro systems are already available in languages including Rust, Scala,
and Lean. Some additions to their reflective APIs would be needed, but adding
such features would be a much smaller change than adding an entire metalanguage
like syntax-spec to their core.

3.4 D S L E X T E N S I B I L I T Y V I A M AC RO S A N D H O S T I N T E RO P E R AT I O N

Macros atop a DSL core offer a means of extensibility that does not compromise
the invariants of the optimizing compiler for the DSL core language. Macros are
only capable of generating code in the same core language that programmers
could write directly themselves. They have no access to the internals of the DSL
implementation and thus cannot break its assumptions. However, when the DSL
core language exists as part of a multi-language with the host, macros can be used to
add DSL features that are not expressible by expansion to the DSL core alone. This

22 D E S I G N D E C I S I O N S

possibility is exemplified by the query-facts extension to miniKanren presented
in Figure 2.7. The expressive power and safety of this approach to extensibility
relies on the design of the multi-language. Interaction with the host language must
be flexible enough to provide the expressive power needed to create interesting
extensions, but sufficiently restricted to avoid inhibiting the optimizations that the
DSL compiler should perform.

Macros atop a multi-language can also link together multiple DSLs. In the
context of the query-facts extension to miniKanren, we can regard miniKanren
and SQL as separate DSLs, each extending Racket via multi-language macros.
Thanks to the multi-language structure, it is possible to use a combination of
miniKanren, SQL, and Racket to perform a task. With a macro that expands to
this combination, it is also possible to hide the Racket glue code between the two
DSLs, making it appear as though they are directly integrated.

D E S I G N A LT E R N AT I V E S An alternative to the combination of macros and
multi-language host interaction would be to implement DSLs with open compilers.
Such an open DSL compiler could be extended with additional DSL syntactic
forms or additional compiler passes. Open compilers for multiple DSLs could
be simultaneously extended to more deeply link the DSLs. For example, a static
analysis could integrate a domain-specific understanding of fragments in each DSL
to more precisely predict the behavior of the complete program. At the same time,
an incorrect extension to the open compilers could easily introduce bugs. This
is the same design trade-off as in Section 3.1, but with respect to extensions to
DSL compilers rather than regarding DSL compilers as extensions to the host.
An open compiler admits more extensibility, whereas macro extensions atop a
multi-language core precludes the possibility of DSLs breaking internal invariants
of the compiler.

3.5 I N T E G R AT I N G C O N V E N T I O N A L A N D M U LT I - L A N G UAG E M AC RO S

Conventional and multi-language macros have complementary advantages, and the
syntax-spec design allows them to work together to attain the benefits of both.
Programmers need to learn the skill of writing compilers in the small before they
can apply the skill in the large to create sophisticated DSLs. Simple macros that
implement syntactic sugar are the ideal introduction, and conventional macro tech-
nology is ideal for these simple rewritings. Such macros do not need the additional
tools provided by syntax-spec, so using syntax-spec for these macros incurs
the additional cost of writing binding specifications without any additional benefit.
Conventional hygienic macros do not require binding specifications and are thus
the easiest entry-point for new programmers.

The multi-language macros provided by syntax-spec become valuable when a
programmer is ready to implement a static check or optimizing compiler. This is
the right point to transition from conventional macros to a multi-language structure

3.5 I N T E G R AT I N G C O N V E N T I O N A L A N D M U LT I - L A N G UAG E M AC RO S 23

where the language grammar, boundaries, and binding rules are explicit. This
transition can occur both in individual DSL projects and in the overall arc of a
programmer’s experience with language-oriented programming. The back-end
compiler for the syntax-spec version of a DSL can re-use portions of the initial,
conventional-macro implementation because both systems use the syntax-parse
pattern matcher and templates for code generation.

The miniKanren DSL exemplifies the transition from conventional to multi-
language macros. Most implementations of miniKanren rely on a layer of conven-
tional macros that provide syntactic sugar over an embedding called microKanren.
This implementation strategy does not realize optimizing compilation, and there
are many errors possible due to language mixing that such implementations fail
to not catch. However, the implementation is also simple which is a benefit as
miniKanren DSL is often used as a first introduction to DSLs. For a programmer
who knows Scheme or Racket, explaining miniKanren bottom-up starting from
the embedding and only later adding on a syntactic sugar results in a smooth
introduction. The compiler portion is also easy to introduce to novices because it
consists only of basic syntax-rules macros that look much like the pseudocode
for an expansion that one might write down in a paper. As miniKanren developed
further, it became advantageous to add optimizing compilation. Multi-language
macros from syntax-spec enabled this stage of development, supporting both an
optimizing compiler (Chapter 10) and a multi-stage extension (Ballantyne et al.,
2025).

D E S I G N A LT E R N AT I V E S As an alternative, a macro system following the rest
of the syntax-spec design could omit conventional macros. All macros would
require full grammar and binding-rule specifications. Such a design would not need
the mechanisms of conventional macro hygiene, which could significantly simplify
the implementation. Having binding rules and grammars for all extensions would
also make it easier to implement reliable IDE services. However, it would come
with two costs. First, programmers would need to (learn to) write binding rules
even for simple syntactic-sugar macros. Second, the expressive power of syntax
specifications in syntax-spec grammar specifications is limited as compared to
the patterns of syntax-parse. This limitation is due to the fact that syntax-spec
expansion must reconstruct the specified syntax as well as pattern match it. In
the context of Racket where the ecosystem already has many extensions using
conventional macros, integrating with them is the natural choice. The alternative
design seems well worth exploring in another host language, however.

4
P R I O R W O R K

Multi-language macros are one point in a large space of approaches to DSL im-
plementation. The syntax-spec design synthesizes ideas from macro systems,
language workbenches, binding specification languages, and multi-language seman-
tics. The first four sections of this chapter review prior work in these areas. A major
alternative to language extension is embedding, where the DSL is implemented as
a library in the host language. DSL programs expressed via an embedding can also
be extracted via reflection to allow for optimizing compilation. The fifth section
contrasts multi-language macros with embedding and extraction.

4.1 M AC RO S

Multi-language macros build on several threads of work that push macros beyond
simple rewritings and towards more sophisticated language extensions.

M AC RO S A S L A N G UAG E B O U N DA R I E S Because procedural macros admit
arbitrary transformations, they have long been used to implement substantial
languages as extensions. For example, Felleisen (1985) presents a Prolog-like
language hosted in Scheme.

Some macro systems are specifically designed for this kind of macro; that is,
designed with the expectation that a macro is a boundary between the host and
an entire DSL. Typed Literal Macros (Omar and Aldrich, 2018), Converge’s DSL
blocks (Tratt, 2005), and Template Haskell’s quasiquoters (Mainland, 2007) are
all forms of macros which process a delimited region of syntax that may be any
text. The DSL within the region may thus have a syntax that radically differs from
that of the host. Typed Literal Macros extend the basic idea with a mechanism
called segmentation by which a macro informs the host that certain spans within
the DSL syntax are host-language subexpressions that should be parsed by the host.
Segmentation also ensures that the host’s standard IDE services can be provided
for these subexpressions.

However, in contrast to syntax-spec none of these systems inform the host
about the structure of the DSL fragment beyond the position of host-language
subexpressions. The host is not informed about the DSL’s grammar or binding
structure, so the host cannot automatically interpose on host-language references
to DSL binders or provide IDE services.

M AC RO S T H AT W O R K T O G E T H E R Procedural macros also admit the possi-
bility of using side effects for communication between macros. DSL implemen-

25

26 P R I O R W O R K

tations in LISPs sometimes use such techniques without an explicit support from
the macro system. For example, Wand (1984) presents a DSL for executable deno-
tational semantics, whose implementation is mentioned in Kohlbecker and Wand
(1987). The DSL is implemented using a collection of procedural macros that
communicate to typecheck the semantics definition. Without specialized support,
however, compile-time side effects are difficult to program with. Such effects may
execute in a variety of contexts: when a program is first macro-expanded, when it is
loaded for compilation of another file, or when it is evaluated in a top level REPL.
Some Scheme systems include an eval-when construct1 to help manage these
executions, but it must be used carefully to ensure information is communicated at
the correct times.

Racket provides explicit support for such “macros that work together” via several
mechanisms. First, its module system’s phases and visits mechanisms manage the
execution of module-level side effects such that they can be reliably used to
communicate even in the presence of separate compilation (Flatt, 2002). Second,
Racket’s expander allows macros to record and retrieve additional information
associated with name bindings and syntactic context (Barzilay, Culpepper, and
Flatt, 2011; Flatt et al., 2012). Finally, reflective facilities expose some of the
internal structures of the macro expander in order to allow macros to orchestrate
custom expansion processes. Macros can invoke the expander on subexpressions
and manipulate representations of scopes and bindings (Flatt, 2016a).

Macros that work together have been used to create macro-extensible DSLs,
such as Racket’s extensible pattern matcher (Tobin-Hochstadt, 2011), require,
provide, and syntax-parse sub-languages. Realizing extensibility with this
technique requires manually implementing a macro expander for the DSL. Prior to
the API improvements I discuss in Section 7.2 such implementations were ad-hoc
and could not realize macro hygiene for DSLs with internal binding structure. One
exception is the “type expanders” library (Soy, 2017) for Typed Racket, which
reimplements rather than reuses Racket’s hygiene algorithm for its DSL expander.
The McMicMac system of Krishnamurthi (2001) is a predecessor of Racket’s
current approach. In McMicMac, “micros” implement functionality similar to
DSL expanders, but the system does not address hygiene. By comparison with all
these approaches to manually implemented DSL macro expanders, syntax-spec
provides hygienic macro-extensibility automatically for all DSLs defined in the
metalanguage.

Macros that work together have also been used to implement typechecking as
part of macro expansion in Chang et al. (2019) and Chang, Knauth, and Greenman
(2017). The Turnstile metalanguage acts as a declarative layer on top of this
implementation. This approach was even used to create a Haskell-like language
that compiles to Racket (King, 2017). My work on macro expansion for DSLs
was initially motivated by difficulties in the implementation of Turnstile. The new
API I introduce in Section 5.3 provides a foundation that could be used in a robust

1 https://scheme.com/csug8/system.html#./system:s76

https://scheme.com/csug8/system.html#./system:s76

4.2 L A N G UAG E W O R K B E N C H E S 27

re-implementation of Turnstile. However, most DSLs in Racket do not need a type
system and the syntax-spec DSL is much more concise for declaring untyped
DSLs.

A major difficulty with the “macros that work together” approach is the degree
of expertise required to use the reflective API. Using the API successfully requires
DSL creators to understand the operational sequence of macro expansion steps
and Racket-specific implementation concepts such as scope sets, phases, and
visits in great detail. In contrast, syntax-spec entirely hides that API and the
operational details of expansion below a declarative metalanguage. The concepts
of the metalanguage are mostly familiar to working DSL implementors.

M AC RO S W I T H D E E P E R H O S T- L A N G UAG E I N T E G R AT I O N One of the
key ideas in syntax-spec is that the host language should be informed of the
internal structure of syntax of DSL fragments so that it can provide IDE services
and support multi-language interactions. A variety of macro system designs have
explored ways for macros to integrate more deeply with the syntax, static semantics,
and compilation of their host languages. Fortress (Allen et al., 2009) and Lean
4 (Moura and Ullrich, 2021) allow macros to extend the parsing process of the
host language. Scala macros (Burmako, 2013) can reflect on type information of
subexpressions in their input. The Klister language (Barrett, Christiansen, and
Gélineau, 2020) integrates macro expansion with the process of Hindley-Milner
type inference, suspending type-dependent macros as needed until additional type
information is available. The Ziggurat macro system (Fisher and Shivers, 2008)
demonstrates how an object-oriented approach to macros can allow macros to
extend the static analyses of the core language in order to yield more precise results
thanks to additional structure from domain-specific languages. While currently
syntax-spec integrates extensions with the host only in terms of information
about binding structure, these other lines of work suggest avenues for future
integrations as discussed in Section 16.6.

4.2 L A N G UAG E W O R K B E N C H E S

The syntax-spec metalanguage adapts ideas from the language workbench tradi-
tion into a new context where I anticipate an opportunity for broad adoption.

The syntax-spec system is particularly influenced by the Spoofax language
workbench (Kats and Visser, 2010) and the “scope graphs” model (Neron et al.,
2015) underlying its Statix static semantics specification language (Antwerpen
et al., 2018). Spoofax aims to be general, with metalanguages expressive enough
to implement the full gamut of designs compatible with well-established pro-
gramming language theory. This principled, research-focused approach pushes the
expressivity of language workbench metalanguages. That expressivity comes with
a cost, however: programmers need to learn an expansive metalanguage and have
some familiarity with the underlying theory. To reduce this cost and flatten the

28 P R I O R W O R K

learning curve I focus instead on the restricted scenario of building DSLs that fit
together on top of a single host language.

The SugarJ macro system (Erdweg et al., 2011b) adapts the technologies from
Spoofax to work in the context of a macro system. A SugarJ definition includes
a grammar specification and a DSL compiler, much like a syntax-spec one.
SugarJ’s “editor libraries” (Erdweg et al., 2011a) allow DSL creators to extend IDE
services to their DSL. However, the system does not account for binding structure,
provide macro extensibility, or make multi-language structure explicit. Finally, its
implementation relies on an external pre-processor, which means that potential
users must accept additional dependencies and modify their build process.

Language workbenches such as Spoofax and SugarJ generate more from a DSL
definition than just a compiler. They also automatically generate IDE services.
These services range from basic syntax coloring and bracket matching to rich
semantic services. For example, Spoofax generates code completion that takes into
account the syntax, static semantics, and name binding of the language (Pelsmaeker
et al., 2022). With additional effort DSL creators can also implement custom
transformations such as refactorings. The IDE services provided by the current
syntax-spec implementation are limited to those based on local binding structure,
such as rename refactorings. The more sophisticated services provided by language
workbenches suggest directions for future work (Section 16.6).

4.3 B I N D I N G S P E C I F I C AT I O N L A N G UAG E S

The research literature comes with a variety of binding-rule languages; syntax-
spec is most inspired by Visser’s Spoofax language workbench and scope graphs
approach (Antwerpen et al., 2016; Antwerpen et al., 2018; Neron et al., 2015).
Like syntax-spec, these languages augment syntax definitions with binding
information. They supply binding-related services variously supporting IDEs,
compilers, and proofs. My work applies this well-known idea of deriving binding-
related services from declarative binding rules to the new purpose of supporting
sophisticated DSL implementations in a macro-extensible language. This context
poses new problems, particularly regarding integration with the host language
and macro hygiene. These considerations induce constraints that dictate much of
my binding language design (see Chapter 9 for details). Other examples of such
binding languages include embedded DSL compilers (Weirich, Yorgey, and Sheard,
2011), proof assistants (Griffin, 1988; Keuchel, Weirich, and Schrijvers, 2016;
Sewell et al., 2007), and other language workbenches (Clément, Incerpi, and Kahn,
1989; Konat et al., 2013).

Herman and Wand (2008), followed by Stansifer and Wand (2014) and Pombrio,
Krishnamurthi, and Wand (2017), introduce the idea of using type-like binding
specifications for declarative macros. They simultaneously aim for two objec-
tives: (1) treating binding specifications as types for macros and (2) replacing the
inference-based implementation of macro hygiene with an approach amenable

4.4 M U LT I - L A N G UAG E S E M A N T I C S A N D L A N G UAG E B O U N DA R I E S 29

to formalization. Unfortunately, typechecking macro transformers to ensure that
expansion preserves binding structure imposes serious restrictions on their expres-
sivity. Rather than reject inference-based hygiene, I use binding rules to implement
hygiene inference for macros that extend the DSLs defined in syntax-spec. Most
importantly, the binding language of syntax-spec is not a restrictive type system,
meaning it accepts all macro transformers.

4.4 M U LT I - L A N G UAG E S E M A N T I C S A N D L A N G UAG E B O U N DA R I E S

The structure of syntax-spec declarations takes inspiration from the structure
of multi-language semantics (Matthews and Findler, 2007). The grammars of the
component parts of a multi-language are joined by boundary forms. In a multi-
language operational semantics, reduction rules for the component languages are
defined with different evaluation contexts to keep them from applying to the wrong
language. Then, additional reduction rules for boundary forms define the ways
that the component languages can interact. As values cross the boundary, they
may be transformed into values belonging to the other language. Matthews and
Findler propose several value translation strategies In the lump embedding, values
are opaque in the opposing language. In the natural embedding, values of one
language translate to corresponding values on the other side. Such a transformation
may also wrap and monitor the values to ensure that they behave according to
an expected type in the destination language. My implementations of DSLs in
syntax-spec use such embedding strategies. For example, miniKanren employs
lump embedding for goals and natural embedding for term values.

Higher-order contracts (Findler and Felleisen, 2002) correspond to the checks
at boundaries in a multi-language that are necessary to ensure evaluation does not
reach stuck states. Whereas first-order properties of values crossing the boundary
can be checked immediately, enforcing higher-order properties requires wrapping
values with proxies that check subsequent uses of the values. Beyond simply
raising an error, contracts also track blame in order to correctly indicate which
party violated a contract. Blame assignment accomplishes this task even when
the original contract boundary and the eventual failing check are separated due to
higher-order control flow. Trace contracts (Moy and Felleisen, 2023) are a recent
addition which allow contracts to monitor temporal properties as well. Racket
includes a sophisticated higher-order contract system which can be used in the
compilation of syntax-spec DSLs.

DSLs implemented with syntax-spec insert contracts as part of the compila-
tion of boundary forms to protect internal invariants of the DSL implementation.
Generated code within a DSL fragment may use low-level representations that do
not locally enforce invariants. To make this approach safe, it is essential that the
contract system ensure that all parts of the contracts between DSL and host are
actually monitored. Proper enforcement is challenging in the context of higher-
order data flows and mutable data. For example, consider a DSL data structure

30 P R I O R W O R K

that uses mutable cells, where the value within satisfies some invariant. It is not
enough to check the invariant when the cell crosses between DSL and host. The
contract system must also interpose on subsequent mutations to ensure that host
code cannot later assign an improper value that breaks the invariant.

The formal property of complete monitoring (Dimoulas, Tobin-Hochstadt, and
Felleisen, 2012) from the higher-order contracts literature and the related property
of vigilance (Gierczak et al., 2024) from the world of gradual typing address this
problem. Complete monitoring requires that contracts be capable of interposing
on all (dynamic) channels of interaction between DSL code and host-language
code. Vigilance further requires that the dynamic checks together ensure that
values reaching positions annotated by types (or equivalently contracts) in fact
have the behavior denoted by those annotations. In conjunction with these dynamic
properties of the host-language contract system, it is critical that syntax-spec
allow DSL compilers to insert contracts at all syntactic (static) boundaries between
DSL and host. In particular, the reference compilers feature (Section 2.3.1) allows
the DSL compiler to insert a contract at the implicit boundary created by a cross-
language variable reference.

4.5 E M B E D D I N G A N D E X T R AC T I O N

The task of extending a host language with a DSL suggests re-using some facets
of the host in the DSL that is being built, and there is a widely explored space of
trade-offs (Mernik, Heering, and Sloane, 2005) surrounding such linguistic re-use.
This design space is anchored at two ends by the deep and shallow embeddings.
Both re-use host-language syntax, but they differ to what degree they re-use host
language semantics. Shallow embeddings make it trivial for the implementer, or
an ordinary DSL user, to extend the DSL and to integrate host-language code,
because DSL code is itself simply host-language code. In shallow embeddings of
miniKanren (Ballantyne, 2024; Friedman et al., 2018; Kosarev and Boulytchev,
2018), for example, each syntactic form is realized in the host language as either a
call to a function or via an individual host-language macro that expands to runtime
functions and to host-language binding forms such as lambda. However, there is no
DSL compiler that gets an overall view of the program, so optimizing compilation
is impossible.

By contrast, deep embeddings can offer whole-program compilation. A DSL
compiler executing at the host language’s runtime takes the abstract syntax as input
and produces host-language code as output. In a deep embedding of miniKanren
for example, host-language code constructs a datatype representing miniKanren ab-
stract syntax (Lozov and Boulytchev, 2021; Verbitskaia, Berezun, and Boulytchev,
2020; Verbitskaia, Engel, and Berezun, 2023).

Some approaches to embedding attempt to reconcile extensibility and optimizing
DSL compilers. One fruitful approach is to layer a shallow embedding on top
of a deep embedding (Elliott, Finne, and Moor, 2003; Gibbons and Wu, 2014;

4.5 E M B E D D I N G A N D E X T R AC T I O N 31

Svenningsson and Axelsson, 2015). The shallow embedding provides integration
with the host language syntax and static semantics. It also achieves extensibility.
Extensions are host language function definitions, whose applications run in the
host language. The semantic domain of the shallow embedding is the datatype of the
deep embedding. A DSL optimizing compiler processes the data representation of
the deep embedding. DSL implementations in syntax-spec have parallels to this
layering. DSL extensions via macros are analogous to functions defining extensions
in a shallow embedding, but the process that generates DSL core language code is
macro expansion rather than host-language evaluation.

Another approach relies on reflection to extract code from a shallow embedding
for compilation (Atkey, Lindley, and Yallop, 2009; Najd et al., 2016; Rompf et al.,
2012; Scherr and Chiba, 2014; Shaikhha, Jovanovic, and Koch, 2018; Šinkarovs and
Cockx, 2021). DSL programs are written as host-language code calling functions
that represent DSL forms, just as in a shallow embedding. These functions may be
defined as normally in a shallow embedding, or they may instead be mere stubs.
This design works because the host-language code is not actually executed in the
normal way. Instead, a quotation or compile-time reflection mechanism is used to
extract a representation of the host-language code. A DSL compiler provides an
alternate interpretation of the code, recognizing applications of the stub functions as
DSL constructs to compile. This DSL compiler thus has control over the complete
DSL program, so it may perform analyses and optimizations.

This reflection-based strategy implicitly supports a multi-language architecture.
Extensibility may be achieved by employing a normalizer for the host language,
either built-in to the reflection mechanism or separately defined. The normalizer
is configured to avoid reducing calls to the stub functions representing the DSL
core language, but it reduces other calls. Just as function calls representing uses
of extensions evaluate in the host language in a shallow embedding, they reduce
during normalization and leave behind only calls that belong to the DSL core
language.

Both of these approaches rely on encoding the DSL in the host language syntax
and static semantics. Indeed, re-use of these components is a key, separate motive
for embedding-based implementation techniques, beyond extensibility. This is
particularly true when the motive is to reuse the host language type system, as in
the case of re-using Haskell’s type system to create a typed logic programming
language (Claessen and Ljunglöf, 2001; Hinze, 1998), or embedding a DSL in
a theorem prover in order to support verification (Šinkarovs and Cockx, 2021).
However, reuse of the host syntax and static semantics can come at a serious cost
when the DSL has significant differences with the host. If the DSL’s type system
cannot be expressed in the host type system, there is no benefit to re-use. If a
DSL’s re-interpretation of the host language only supports a small subset of its
syntax, DSL users may have trouble understanding what constructs they can use in
DSL code. Finally, DSL compiler authors must contend with the complexity of the

32 P R I O R W O R K

host language and its representation in the reflection system, including portions
irrelevant to their DSL.

The syntax-spec approach to DSLs and extension has particular advantage
over embedding in cases where the DSL and host differ in important ways. DSLs
may come with their own new syntax, including binding structure, and new static
semantics. Macros, too, define new syntax and binding structure rather than reuse
that of the host. This approach avoids any impedance when either using or imple-
menting the DSL.

Part II

I M P L E M E N TAT I O N

I M P L E M E N TAT I O N

This part discusses the implementation of the syntax-spec system in Racket,
including hygienic macro expansion, the binding specification language, and inte-
gration with Racket’s conventional macro system.

In Racket, the macro expander realizes the entire front-end of the language
implementation. Beyond expanding macros, it also checks syntax to raise syntax
errors, ensures that names are bound, and captures information for IDEs. This
process requires knowledge of the grammar and binding structure of the core
language that is the target of expansion. From this perspective, the job of syntax-
spec is essentially to extend Racket’s expansion process to handle DSL core
languages in addition to Racket’s own core language. Given a language declaration,
the syntax-spec macro system extends Racket’s expansion process to handle the
DSL core syntax as well as Racket code.

As background for the remainder of the part, Chapter 5 reviews Racket’s ap-
proach to hygienic expansion, known as “sets of scopes.” Using these preliminaries,
Chapter 6 presents a model of hygienic expansion for DSL syntaxes declared in
syntax-spec. The model shows how syntax-spec interprets binding specifica-
tions to drive the expansion of DSL syntax.

While the model takes the form of an interpreter, the actual implementation
uses a mix of strategies to allow syntax-spec to be built as a layer on top of
Racket’s existing conventional macro system. Chapter 7 explains how syntax-

spec is implemented via macros that consume a DSL specification and generate
other macros and compile-time code that implement the DSL. This compile-time
code is effectively a DSL-specific macro expander, specialized to the DSL’s core
language. To implement the multi-language that combines the host and DSL, the
Racket expander and this specialized DSL expander must be integrated. Chapter 8
presents this integration, including how the expanders invoke each other and share
the static information they glean about the syntax they expand.

Finally, Chapter 9 reflects on the constraints that the goal of implementing
hygienic macro expansion imposes on the design of syntax-spec’s language of
binding specifications. Some desirable binding structures cannot be realized with
Racket’s “sets of scopes” hygienic expansion process, and furthermore some ways
of specifying binding structure do not provide enough information to derive this
process.

35

5
A R E V I E W O F H Y G I E N I C E X PA N S I O N W I T H B I N D I N G
A S S E T S O F S C O P E S

Before we dive in to the implementation of syntax-spec, this chapter reviews the
problem of macro hygiene and the solution from Flatt, 2016a used in Racket. The
syntax-spec macro system extends this solution to apply to expansion targeting
DSL core languages as declared in the metalanguage. This summary does not aim
to be exhaustive, and a complete understanding of the model of Chapter 6 is likely
to require additional familiarity with the details of this prior work.

5.1 B I N D I N G A S S E T S O F S C O P E S B Y E X A M P L E

The top of Figure 5.1 defines a Racket macro for list comprehensions that resembles
an ordinary for-loop. The left column below shows a use of this macro in context.
The right column below displays the naive interpretation of the macro use; that
is, a copy of the concrete template syntax from the macro definition replaces the
macro use and the pattern variables in the template are replaced with the concrete
syntax elements of the macro use. It is naive because neither of these substitutions
is sensitive to the lexical scope of Racket or the bindings of any names.

(define-syntax-rule

(for/list ([element init]) body)

;; rewrites to

(let loop ([lst init] [acc '()])

(if (null? lst)

(reverse acc)

(let ([element (first lst)])

(loop (rest lst)

(cons body acc))))))

;; a use of `for/list`
(let ([reverse ...]

[acc 5])

(for/list ([cons l])

(+ cons acc)))

;; ... expands naively to

(let ([reverse ...]

[acc 5])

(let loop ([lst init] [acc '()])

(if (null? lst)

(reverse acc)

(let ([cons (first lst)])

(loop (rest lst)

(cons (+ cons acc) acc))))))

Figure 5.1: A macro expansion illustrating the three kinds of hygiene violations in naive
expansion

37

38 A R E V I E W O F H Y G I E N I C E X PA N S I O N W I T H B I N D I N G A S S E T S O F S C O P E S

As a result, the binding structure of the naive expansion differs from the intended
one, and the program thus exhibits the wrong behavior. In this case, the references
to reverse and cons from the macro template are captured by unrelated bindings
in the context of the macro use. Similarly, the meaning of the reference acc in the
macro use is changed in an unexpected manner.

In other words, naive interpretation of macros causes three kinds of problems:

1. A use-site context may capture free references in macro templates. Syntax is
moved from the template into the context of the use site. Thus, the reverse
reference from the template moves into the scope of the let-binding of
reverse that surrounds the use of for/list.

2. Use-site bindings may capture free references in macro templates. The syntax
of the macro use itself is mutually-substituted into the template. Binders
originating in the use such as cons are placed into binding positions in
the template via pattern variables. Here, the binding of cons captures the
template reference to the standard prelude function.

3. Template-introduced bindings may capture use-site references. When ex-
pansion replaces pattern variables in the template with variable references,
binders in the template may capture these references. Here, acc is captured
by the loop accumulator in the template.

The decades-old solution to this problem is to make macro expansion hygienic.
Racket uses Flatt’s approach to macro hygiene, which attaches scope tokens to
syntax in order to impose constraints on name resolutions in expanded code.
Concretely, Flatt’s algorithm uses three kinds of scope tokens that prevent the three
categories of capture mentioned above:

L E X I C A L S C O P E T O K E N S represent what we normally think of as Algol-like
scopes. They prevent use-site context captures of free references in macro
templates.

U S E - S I T E S C O P E T O K E N S restrict bindings in the macro use to capture only
references also in the use site and thus prevent use-site captures of free
references in macro templates.

M AC RO - I N T RO D U C T I O N S C O P E T O K E N S restrict bindings in the syntax in-
troduced by the macro to capture only references that are introduced by the
same macro expansion step, thus preventing template-introduced captures of
use-site references.

Each scope token represents a constraint that the scoped identifier may serve as
a binder only for other identifiers marked with the same scope token. Thus, a set of
scope tokens constrains a binder to capture only references that have a superset of
those scope tokens. Resolution for a reference works by finding binders with the

5.2 A R E C A P O F T H E C O R E M O D E L O F B I N D I N G A S S E T S O F S C O P E S 39

appropriate subset. Normal lexical shadowing is accommodated by looking for the
binder whose set of tokens is a superset of all other candidate binders.

The expander attaches these scope tokens to each region of syntax before expan-
sion moves and combines syntax. The following is the scope-sensitive expansion
of the above macro with each identifier annotated with the expansion-introduced
scope tokens:

(let ([reverse{𝑎lex } ...]

[acc{𝑎lex } 5])

(let loop ([lst init] [acc{𝑏mac, 𝑐lex } '()])

(if (null? lst)

(reverse{𝑏mac, 𝑑lex } acc{𝑏mac, 𝑑lex })
(let ([cons{𝑎lex, 𝑐use, 𝑑lex, 𝑒lex } (first lst)])

(loop (rest lst)

(cons{𝑏mac, 𝑑lex, 𝑒lex } (+ cons{𝑎lex, 𝑑use, 𝑑lex, 𝑒lex }

acc{𝑎lex, 𝑑use, 𝑑lex, 𝑒lex })
acc{𝑏mac, 𝑑lex, 𝑒lex }))))))

The subscripts identify the kind of scope token, and the underlined scopes are
those specifically that prevent the three forms of undesired capture in this example.

The remaining question is how precisely the expander decides to attach these
scope tokens to identifiers. Flatt, 2016a explains this process in detail for the core
language of Racket. Chapter 6 shows how I extend his idea to macro expansion for
any DSL defined in syntax-spec.

5.2 A R E C A P O F T H E C O R E M O D E L O F B I N D I N G A S S E T S O F S C O P E S

My model in Chapter 6 builds on the data definitions from the formalization of Flatt,
2016a. This section explains these definitions, which are shown in Figure 5.2.1

Syntax is represented by syntax objects, which represent a tree structure augmented
with a set of scopes associated with each node. An identifier is a syntax object
containing a name as its datum. The binding store is a global memory that maps
names with scopes to unique names representing binding identities. The expander
environment maps unique binding identities to values representing the meaning of
syntax. Flatt’s environment values represent Racket syntax meanings. My model
needs different kinds of environment values in order to generalize to the multiple
grammatical non-terminals, binding classes, and extension classes of hosted DSL
syntaxes. One kind of environment value in both models is the definition of a macro.
Part of such a value is a representation of the macro transformer. A transformer
value pairs a function from syntax to syntax with a scope identity used for managing
hygienic expansion. Finally, the expander state consists of the store, environment,
and information for tracking details of hygiene to be discussed later.

Using the evaluation syntax, Flatt’s key operation resolves a reference to a unique
binding:

1 I made a slight adjustment to ease the transition to my model.

40 A R E V I E W O F H Y G I E N I C E X PA N S I O N W I T H B I N D I N G A S S E T S O F S C O P E S

stx = Syntax(atom, scps) | Syntax(List(stx, . . .), scps)
id = Syntax(name, scps)

scps = {scp, . . .}
scp = a token that represents a scope

store = finite mapping from (name, scps) to name

exp-env = finite mapping from name to env-val

env-val = . . .

transformer = T(fn, scope-id)
exp-st = St(store, exp-env, scps, scp)

Figure 5.2: Evaluation syntax from Flatt

resolve : id , store Ñ name Find candidate binders whose scope sets are a sub-
set of that of the reference, and return the one whose set is the superset of all
other candidates.

Otherwise, Flatt’s model intermixes operations on the expander state with the
handling of Racket’s particular syntactic forms.

5.3 A N A P I F O R H Y G I E N I C E X PA N S I O N

Ballantyne, King, and Felleisen (2020) introduce an API layer that hides the details
of this manipulation of the expander state. The internal details of these operations
are not important to understanding the implementation of syntax-spec, but their
interfaces are:

enter-scope : exp-st Ñ ⟨scp , exp-st⟩ Adjusts the expander state to expand
within a new scope and produces a token representing that scope plus the
new expander state.

add-scope : stx , scp Ñ stx Adds the scope token from enter-scope to all the
scope sets of a syntax object.

bind : exp-st , id , env-val Ñ ⟨id , exp-st⟩ Creates a new binding in the store
and a corresponding entry in the expander environment, associating the
identifier with the environment value. It returns an identifier that may have
additional scopes and a correspondingly updated state.

lookup : exp-st , id Ñ env-val Y False Uses the binding store and expander
environment to resolve an identifier and, if it exists, to find the corresponding
environment value.

5.3 A N A P I F O R H Y G I E N I C E X PA N S I O N 41

eval-transformer : exp-st , stx Ñ transformer Evaluates a given syntax ob-
ject as Racket code representing a compile-time tranformer procedure. Con-
structs a transformer object encapsulating the procedure plus information for
maintaining hygiene.

apply-transformer : exp-st , transformer , stx Ñ ⟨stx , exp-st⟩ Applies an
encapsulated transformer object to a syntax object, yielding hygienically
expanded syntax and a modified state.

6
H Y G I E N I C E X PA N S I O N F O R SYNTAX-SPEC D S L S

Equipped with the preliminaries from Chapter 5, let us turn to the formal model
of hygienic expansion for DSLs declared in syntax-spec. In order to focus
specifically on hygienic expansion, the model does not address the way the host
and DSL connect to expand multi-language code. See Chapters 7 and 8 for this
connection.

The grammar in Figure 6.1 presents an abstract syntax for the core language
of DSL specifications in syntax-spec. Latter sections of this chapter extend the
grammar to address more sophisticated binding specifications. Conceptually, a
syntax-spec language specification is a finite map from nonterminal names nt-
name to nonterminal definitions nt. A nonterminal definition combines an optional
extension class eclass with a list of tree-grammar productions prod. If an extension
class name is provided, then syntax-spec will apply transformers of that cate-
gory. A production consists of the ordinary grammar production plus a binding
specification.

spec = finite mapping from ntname to nt

nt = NT(𝜖-eclass, (prod, . . .))
𝜖-eclass = 𝜖 | eclass

prod = Prod((formname, pvar, . . .), bspec)
bspec = Scope(bspec)

| Bind(pval, bclass)
| Ref(pval, bclass)
| Subexp(pval, ntname)
| Group(bspec, . . .)
| BindSyntax(pval, eclass, pval)

pval = pvar (to be extended below)
ntname, formname, pvar, bclass, eclass = name

Figure 6.1: Model syntax-spec definition syntax

The core model includes six forms of binding specifications. Elaboration from
the concrete syntax introduced in Section 2.1.1 and documented in Appendix A.2.1.5
to the abstract syntax is straightforward. For example, while

(let v:var e:expr b:expr) #:binding [e (scope (bind v) b)]

43

44 H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S

is the concrete version of the syntax and binding specification for the simple
let-binding form from Racket, its abstract counterpart is

Prod((let, v, e, b),
Group(Subexp(e, expr), Scope(Group(Bind(v, var), Subexp(b, expr)))))

As the example shows, the concrete syntax for bindings, references, and subex-
pressions places the binding class and nonterminal names as qualifications on
the pattern variables in the grammar. By contrast, the abstract syntax places this
information in the bspec forms. Finally, the additional BindSyntax form allows
for macro binding positions within DSL syntax specifications.

Specifications are subject to some simple static semantic constraints. Pattern
variables in binding specifications must be used linearly. The nonterminal name
ntname referenced in a Subexp must match some entry in the spec. Finally, Bind
may appear only within a Scope.

E VA L UAT I O N S Y N TA X The model needs additional syntax to represent inter-
mediate data and the outcome of interpretation. The first pieces are new constructors
for environment values:

env-val = Var(bclass) | Ext(eclass, transformer)

They comprise variable bindings Var and syntax extension bindings Ext.
The remaining extensions to the core syntax represent intermediate states and

outputs in the syntax-spec expander. Matching syntax against a production
pattern yields a substitution, which is then applied to the production’s binding
specification. The binding specification is interpreted into a second substitution
with expanded syntax. This second substitution is applied to a template derived
from the original pattern to produce the completely expanded form. Each of these
steps requires new syntax:

pval = . . . | pvar ÞÑ stx

tsubst = finite mapping from pvar to stx

template = Tmpl(scopes, id, tsubst)

The extension to pval represents the association of pattern variables with syntax
inside a bspec after the first substitution. Template substitutions tsubst are the
second substitution mentioned above; they contain the expanded syntax that results
from interpreting the binding specification. Finally, the template captures the
remaining information needed to construct the final result from tsubst. It includes
the scope set from the parentheses of the original syntactic form1, the tagging
identifier from the head of the form, and an additional tsubst recording the original,
unexpanded syntax for each subform. The latter is used if the binding specification
does not provide an expansion for that subform.

1 The template needs only one scope set corresponding to parentheses because the restricted shape of
patterns in the model does not allow internal tree structure within a production.

H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S 45

E X PA N S I O N My model defines the meaning of a syntax-spec specification
spec as a function that expands a concrete syntax object stx relative to a nonterminal
name ntname and state exp-st:

expand : bspec-eval-f Ñ spec Ñ stx, ntname Ñ exp-st Ñ ⟨stx, exp-st⟩
where bspec-eval-f = spec Ñ bspec Ñ exp-st Ñ ⟨tsubst, exp-st⟩

It relies on two helper functions, eval-bspec, which is supplied as a parameter, and
apply-spec:

eval-bspec : bspec-eval-f

apply-spec : spec Ñ stx, ntname Ñ exp-st Ñ ⟨bspec, template, exp-st⟩

Parameterizing the core model over eval-bspec enables the straightforward ex-
tension of the core model with support for exporting (Section 6.1) and nesting
(Section 6.2) binding forms.

The expand function uses apply-spec directly:

expand(bspec-eval-f) (spec)⟦stx, ntname⟧(exp-st) = ⟨stx1, exp-st2⟩
where ⟨bspec, template, exp-st1⟩ = apply-spec(spec)⟦stx, ntname⟧(exp-st)

⟨tsubst, exp-st2⟩ = bspec-eval-f ⟦bspec⟧(exp-st1)
stx1 = fill-template(template, tsubst)

The apply-spec function matches the syntax against the specification to obtain a
binding specification to drive expansion and a template to reconstruct the expanded
form. The matched portions of the syntax are embedded into the resulting binding
specification, within those forms that describe how they should expand. The given
bspec-eval-f function expands the concrete syntax embedded within the binding
specification to produce a template substitution. The template substitution repre-
sents the expanded subforms of the original syntax, and is used together with the
template to complete the expansion. Both helper functions also accept an expander
state and produce an updated state.

The initial call to expand requires an initial state:

exp-st0 = St(store0, (), H, scope0)

To make the overall expansion process concrete, consider the expansion of the
following let expression similar to those found in Racket:

(let x (+ y 3) (sqr x))

Here the (sqr x) form is a macro that should expand to (expt x 2). Expansion
relies on the previously-presented binding specification, here in abstract syntax:

Prod((let, v, e, b),
Group(Subexp(e, expr), Scope(Group(Bind(v, var), Subexp(b, expr)))))

Following the process described in the preceding paragraph, the apply-spec(spec)
function substitutes concrete subforms from the given let expression into the
binding specification:

Group(Subexp(e ÞÑ (+{} y{} 3{})
{} , expr),

Scope(Group(Bind(v ÞÑ x{} , var), Subexp(b ÞÑ (sqr{} x{}){} , expr), s1)))

46 H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S

To make this example easier to read we can write (sqr{} x{})
{} to represent the

scoped syntax tree Syntax((Syntax(sqr, {}), Syntax(x, {})), {}). Note also that
the substitution retains the pattern variable name. Using this concretized binding
specification, the eval-bspec(spec) function interprets the specification to create a
scope, bind the variable, expand subforms and return the template substitution:

(e ÞÑ (+{} y{} 3{})
{} , v ÞÑ x{s1} , b ÞÑ (sqr{s1} x{s1})

{s1})

Note that the syntax in the template substitution is annotated with the new s1

lexical scope token. By combining this template substitution with the template also
produced by apply-spec(spec), expand(spec) may now construct the final expansion
of the original let expression.

The rest of this subsection explains these helpers in detail, starting with apply-
spec(spec). This function is responsible for either selecting a matching production
from the named nonterminal in the grammar, or applying macros according to the
extension class specified in said nonterminal. Consider the first case, for matching
a production:

apply-spec(spec)⟦stx, ntname⟧(exp-st) = ⟨bspec1, template, exp-st⟩
where Syntax(List(id, stxarg, . . .), scpsform) = stx

Syntax(formname, scpsid) = id

NT(𝜖-eclass, (prod, . . .)) = select-nonterminal(spec, ntname)
⟨(formname, pvar, . . .), bspec⟩ = select-production(formname, (prod, . . .))
bspec1 = substitute(bspec, (pvar ÞÑ ⟨pvar, stxarg⟩, . . .))
template = Tmpl(scpsform, id, (pvar ÞÑ stxarg, . . .))

The first two lines destructure the syntax to find the name of the form, formname,
so that the next two lines can extract the appropriate production from the spec. The
production consists of a pattern (formname, pvar, . . .) and a binding specification
bspec that contains reference to the variables pvar of the pattern. Using these
pieces, apply-spec(spec) creates a new binding specification by substituting the
concrete syntax of subforms for their corresponding pattern variables. Finally,
apply-spec(spec) constructs the desired template.

The second case expands a macro and recurs:

apply-spec(spec)⟦stx, ntname⟧(exp-st) = apply-spec(spec)⟦stx1, ntname⟧(exp-st1)
where Syntax(List(id, stxarg, . . .), scps) = stx

NT(eclass, (prod, . . .)) = select-nonterminal(spec, ntname)
Ext(eclass, transformer) = lookup(exp-st, id)
⟨stx1, exp-st1⟩ = apply-transformer(exp-st, transformer, stx)

It resolves the tagging identifier in the given syntax to an extension binding
whose eclass matches the one specified in the nonterminal. Then, it uses apply-
transformer to invoke the extension’s transformer and recurs with the result. The
apply-transformer operation is responsible for painting syntax with two of the three
kinds of scope tokens needed to achieve hygiene. It applies use-site scope tokens to

H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S 47

eval-bspec(spec)⟦Scope(bspec)⟧(exp-st) = ⟨tsubst, exp-st2⟩
where ⟨scp, exp-st1⟩ = enter-scope(exp-st)

bspec1 = bspec-add-scope(bspec, scp)
⟨tsubst, exp-st2⟩ = eval-bspec(spec)⟦bspec1⟧(exp-st1)

eval-bspec(spec)⟦Bind(pvar ÞÑ id, bclass)⟧(exp-st) = ⟨(pvar ÞÑ id1), exp-st1⟩
where ⟨id1, exp-st1⟩ = bind(exp-st, id, Var(bclass))

eval-bspec(spec)⟦Ref(pvar ÞÑ id, bclass)⟧(exp-st) = ⟨(pvar ÞÑ id), exp-st⟩
where Var(bclass) = lookup(exp-st, id)

eval-bspec(spec)⟦Subexp(pvar ÞÑ stx, ntname)⟧(exp-st) = ⟨(pvar ÞÑ stx1), exp-st1⟩
where ⟨stx1, exp-st1⟩ = expand(eval-bspec) (spec)⟦stx, ntname⟧(exp-st)

eval-bspec(spec)⟦Group()⟧(exp-st) = ⟨Empty(), exp-st⟩
eval-bspec(spec)⟦Group(bspec1, bspecrest . . .)⟧(exp-st) = ⟨tsubst-union(tsubst, tsubst1), exp-st2⟩

where ⟨tsubst, exp-st1⟩ = eval-bspec(spec)⟦bspec1⟧(exp-st)
⟨tsubst1, exp-st2⟩ = eval-bspec(spec)⟦Group(bspecrest, . . .)⟧(exp-st1)

eval-bspec(spec)⟦BindSyntax(pvar ÞÑ id, eclass, pvar1 ÞÑ stx)⟧(exp-st) = ⟨tsubst, exp-st1⟩
where tsubst = (pvar ÞÑ id1, pvar1 ÞÑ stx)

transformer = eval-transformer(exp-st, stx)
⟨id1, exp-st1⟩ = bind(exp-st, id, Ext(eclass, transformer))

Figure 6.2: The eval-bspec(spec) function for interpreting binding specifications.

the input stx and macro-introduction scope tokens to pieces of syntax in the output
stx1 that did not appear in the input stx.

Continuing with eval-bspec, shown in Figure 6.2, we get to the second part of the
process. The eval-bspec function is a straightforward syntax-directed interpreter
for binding specifications that dispatches operations to Ballantyne et. al’s API
introduced in Section 5.2. The only subtle case is that for Scope(bspec), whose
interpretation is responsible for painting the third kind of scope tokens that realize
hygiene: lexical ones. After allocating a new scope token in the expander state,
eval-bspec paints this token on all pieces of concrete syntax inside the Scope
binding specification form. Using the running let example, this step looks as
follows:

bspec-add-scope(Group(Bind(v ÞÑ x{} , var), Subexp(b ÞÑ (sqr{} x{})
{} , expr), s1))

= Group(Bind(v ÞÑ x{s1} , var), Subexp(b ÞÑ (sqr{s1} x{s1})
{s1} , expr))

Critically, the lexical scope token s1 is painted on the let body containing the
macro application (sqr x) before the macro is expanded. The interpretation of
this binding specification continues via a recursive call to produce a template
substitution.

48 H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S

6.1 S E PA R AT E S C O P E A N D B I N D I N G

Having presented the core model, we can now extend it with a semantics for the
syntax-spec binding rule forms that enable the specification of separate scoping
and binding syntaxes. Figure 6.3 presents a small language specification using these
binding rule forms. The block syntax creates a scope to which contained define

(syntax-spec

(nonterminal expr

#| other expression forms elided |#

(block d:def-or-expr ...) #:binding (scope (import d) ...))

(nonterminal/exporting def-or-expr

(define v:racket-var e:expr) #:binding (export v)

e:expr))

Figure 6.3: Declaration of a block syntax with mutually-recursive definitions and begin,
similar to racket/block.

syntaxes contribute (mutually-recursive) bindings. The def-or-expr nonterminal
uses exporting binding rules that can contribute bindings to a surrounding context
using the export form. The binding rule for block uses the import form to attach
these bindings to a scope. A full description of exporting binding rules is available
in the syntax-spec documentation (Appendix A.2.1.3).

The extension of the model for separate scope and binding forms consists of an
additional nonterminal form and three kinds of binding specifications:

nt = . . . | ExportingNT(𝜖-eclass, (prod, . . .))
bspec = . . . | Export(pval, bclass) | Reexport(pval, ntname) | Import(pval, ntname)

The ExportingNT corresponds to the surface-syntax nonterminal/exporting

definition, with its abstract syntax directly resembling the concrete syntax. The
Export and Reexport forms may appear only in the top-level of a binding specifi-
cation in a ExportingNT nonterminal. The Import form may appear only within a
Scope form.

The expansion process for exporting nonterminals is split into two passes in
order to support mutual recursion. Different forms in a shared scope may each
export bindings to which the others refer. Such DSL names and macro names share
a namespace in Racket, so an exported name may shadow a macro. Thus it is
critical that bindings are established before the forms in their scope are expanded.
The expansion process must first traverse all such exporting forms to register the
bindings and then traverse the forms again to expand macros in subforms and
resolve references.

6.2 N E S T I N G B I N D I N G 49

In the model, the two passes of expansion are kicked off by the eval-bspec case
for an Import from an exporting nonterminal:

eval-bspec(spec)⟦Import(pvar ÞÑ stx, ntname)⟧(exp-st) = ⟨(pvar ÞÑ stx2), exp-st2⟩
where ⟨stx1, exp-st1⟩ = expand(eval-bspec-pass1) (spec)⟦stx, ntname⟧(exp-st)

⟨stx2, exp-st2⟩ = expand(eval-bspec-pass2) (spec)⟦stx1, ntname⟧(exp-st1)

The two passes of expansion interpret the binding specifications in the exporting
nonterminal with different evaluation functions:

eval-bspec-pass1 : spec Ñ bspec Ñ exp-st Ñ ⟨tsubst, exp-st⟩
eval-bspec-pass2 : spec Ñ bspec Ñ exp-st Ñ ⟨tsubst, exp-st⟩

The first pass is responsible for creating bindings for Export occurrences within
the binding specification and within subforms indicated by Reexport. It leaves
syntax corresponding to other portions of the binding specification unchanged.
The second pass does not touch Export occurrences but handles all other binding
specification forms just like eval-bspec from the preceding section. Macros expand
in whichever pass first triggers processing of the subform in which they occur.
Because the functions are just minor variants of eval-bspec, I omit their definitions.

Macro abstractions over definitions require special treatment of use-site scopes,
as explained by Flatt (2016a, section 3.4). This treatment is implemented by a
collaboration of the enter-scope, apply-transformer, and bind API operations I
re-use from Ballantyne, King, and Felleisen (2020).

6.2 N E S T I N G B I N D I N G

Finally, we can extend the model with an interpretation for specifications of nesting
binding structure. Nesting binding structures are those where bindings earlier in a
sequence of syntactic elements are visible in the following but not the preceding
elements. Examples include Racket’s let* syntax, local variable bindings in
C, and telescopes in dependently typed languages (de Bruijn, 1991). Figure 6.4
shows how a version of Racket’s let* syntax can be specified in syntax-spec.2

The binding-pair nonterminal is defined with a nesting binding rule. Binding

(syntax-spec

(nonterminal expr

#| other expression forms elided |#

(let* (b:binding-pair ...) e:expr) #:binding (nest b ... e))

(nonterminal/nesting binding-pair (nested)

[v:var e:expr] #:binding (scope (bind v) nested)))

Figure 6.4: Declaration of a Racket-like let* syntax with nesting binding structure.

structures created by nesting binding rules include a hole which must be filled

2 This definition omits support for internal definitions in the let* body.

50 H Y G I E N I C E X PA N S I O N F O R syntax-spec D S L S

with additional scoping structure, indicated by the nested keyword. When a
subexpression with nesting binding rules is referenced in another binding rule,
the hole must be filled using the nest keyword. In the binding rule for let*,
(nest b ... e) indicates that the hole in the binding structure associated with
each binding pair b should be filled with the binding structure for the subsequent
binding pair, and the final hole should be filled with the binding structure of the
body expression e. The syntax-spec documentation describes nesting binding in
more depth (Appendix A.2.1.3).

The extension to the model for nested binding needs another augmentation of
the abstract syntax:

nt = . . . | NestingNT(𝜖-eclass, (prod, . . .))
bspec = . . . | Nested | NestOne(pval, ntname, bspec)

Nesting nonterminals defined with nonterminal/nesting are represented by the
NestingNT abstract syntax form. Nested straightforwardly corresponds to the
concrete syntax, while NestOne models a restricted, binary form of nest. The
model requires that Nested appears exactly once in the binding specification for
each production of a nesting nonterminal and does not appear in other kinds of
nonterminals.

eval-bspec(spec)⟦NestOne(pvar ÞÑ stx, ntname, bspecn)⟧(exp-st) = ⟨tsubst2, exp-st3⟩
where ⟨bspecpre, templatepre, exp-st1⟩ = apply-spec(spec)⟦stx, ntname⟧(exp-st)

⟨bspec, template⟩ = 𝛼-rename-template-vars(templatepre, bspecpre, bspecn)
bspecsubst = substitute(bspec, (Nested ÞÑ bspecn))

⟨scp, exp-st2⟩ = enter-scope(exp-st1)
bspecscope = bspec-add-scope(bspecsubst, scp)
⟨tsubst, exp-st3⟩ = eval-bspec(spec)⟦bspecscope⟧(exp-st2)
stx1 = fill-template(template, tsubst)
tsubst1 = remove-template-vars(tsubst, template)
tsubst2 = tsubst1 [pvar ÞÑ stx1]

Figure 6.5: The interpretation of nesting binding specifications

The semantic function for interpreting binding specifications, eval-bspec, is ex-
tended by one clause; see Figure 6.5. While the clause resembles the expand(spec)-
based implementation of Subexp, it differs in that it also substitutes the provided
bspec𝑛 for Nested. This substitution step is underlined in the figure. As a result
bspec𝑛 never contains Nested, because it is always eliminated via substitution.

Ultimately, the expanded syntax for portions of the form represented by stx and
for portions of original syntax contained in bspec𝑛 are both returned in tsubst from
recursive evaluation. Elements of the first category are used to fill the template and

6.2 N E S T I N G B I N D I N G 51

produce the expanded stx1, while the latter are returned to allow the surrounding
context to construct expanded syntax including the nested portion. This strategy of
combining and then re-separating portions of two binding specifications creates
the potential for conflation of the pattern variables belonging to each. The eval-
bspec(spec) rule for NestOne avoids this conflation first by renaming to ensure that
the pattern variable names do not conflict locally and then by removing the entries
only needed for the local template so they do not conflict with names used in the
surrounding template. The first task is accomplished by 𝛼-rename-template-vars
and the second by remove-template-vars.

Use-site scopes also require special treatment for nesting, because they would
prevent intended bindings. My solution is to apply an extra lexical scope token to
all syntax in a nesting binding rule after filling the hole, which obviates the need
for the use-site scope token. This approach is inspired by Flatt (2016b, section
2.3)’s treatment of letrec-syntax.

7
L AY E R I N G SYNTAX-SPEC AT O P R A C K E T ’ S
C O N V E N T I O N A L M A C R O S Y S T E M

The syntax-spec macro system is built as a layer on top of Racket’s conventional
macro system. This implementation strategy supports the design goals outlined
in Sections 3.3 and 3.5. That is, it decouples the development of syntax-spec
from the core of Racket and enables the re-use of and integration with elements of
the conventional macro system. Specifically, the syntax-spec metalanguage is
implemented as a macro that accepts as input a DSL specification and generates
as output compile-time code and macros that implement the DSL. The generated
compile-time code connects to the host via an API that provides reflective ac-
cess to the host expander. The generated code also re-uses existing abstractions
built for conventional macros, including the syntax-parse pattern matching and
templating language (Culpepper, 2012).

7.1 T H E G E N E R AT E D D S L E X PA N D E R

The code generated from a syntax-spec DSL declaration implements a macro
expander specialized to the core DSL syntax. The generated macros act as entry
points from host-language expansion into the DSL-specific expander and DSL
compiler. As an example, Figure 7.1 outlines the structure of the code generated
for the specification of miniKanren’s syntax from Figure 2.2. The generated code
includes analogues of each element of the miniKanren syntax-spec declaration.
All the code within begin-for-syntax blocks or appearing on the right-hand-side
of a define-syntax macro definition is code that executes at Racket compile time,
triggered by macro expansions (Flatt, 2002).

Binding classes and extension classes are each realized as compile-time structure
type declarations (such as term-variable-rep and goal-macro-rep). Instances
of these structure types are used to represent bindings of names and macros in
the expander environment. They are analogous to env-val values from the model
(Page 44) instantiated with bclass and eclass names. The new structure types inherit
from parent types binding-class-rep or extension-class-rep. These parent
types implement the prop:set!-transformer structure-type property protocol1

in order to raise an error when the DSL name or macro is improperly used in a
Racket rather than DSL context. Any instance of a structure implementing this
protocol is recognized as a macro by the Racket expander, and the procedure
associated with the property is invoked to define its expansion. In this case, the

1 https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote.
_~23~25kernel%29._prop~3aset%21-transformer%29%29

53

https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote._~23~25kernel%29._prop~3aset%21-transformer%29%29
https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote._~23~25kernel%29._prop~3aset%21-transformer%29%29

54 L AY E R I N G syntax-spec AT O P R AC K E T ’ S C O N V E N T I O N A L M AC RO S Y S T E M

;; Representations for DSL bindings in the expander environment

(begin-for-syntax

(struct term-variable-rep binding-class-rep ["term variable"])

(struct rel-name-rep binding-class-rep ["relation name"])

(struct goal-macro-rep extension-class-rep ["goal macro"])

(struct term-macro-rep extension-class-rep ["term macro"]))

;; Syntax bindings for each syntactic form of the DSL

(define-syntax == (literal-rep '==))

;; similar literal definitions for disj, conj, fresh1, GE, quote,

;; cons, and TE elided.

;; Expand functions for each nonterminal in the DSL grammar

(begin-for-syntax

(define goal-expander (syntax-parser #| elided |#))

(define term-expander (syntax-parser #| elided |#))

(define quoted-expander (syntax-parser #| elided|#)))

;; Macros for each host-interface form

(define-syntax run (expression-interface (syntax-parser #| elided |#)))

(define-syntax defrel (definition-interface (syntax-parser #| elided |#)))

(define-syntax EG (expression-interface (syntax-parser #| elided |#)))

(define-syntax ET (expression-interface (syntax-parser #| elided |#)))

Figure 7.1: An outline of the compile-time code and macros generated by syntax-spec

for the specification of miniKanren’s syntax from Figure 2.2

expansion raises a syntax error indicating that the form is used in an inappropriate
position.

Each syntactic form name occurring as part of a nonterminal in a syntax-spec
declaration creates a new name binding identifying the form. Identifying forms via
these name bindings means that they can be shadowed by macros and imported and
exported from modules, allowing for local tailorings of DSL syntax. In the gener-
ated code, the name bindings are realized by define-syntax macro definitions
with transformers generated by the literal-rep helper, such as the == binding in
Figure 7.1. DSL expanders use the name bindings to identify the forms, but do not
invoke the associated transformer. Thus the macro transformer is called only when
the form is used in a Racket context, and it raises a syntax error indicating that the
form was improperly used from Racket.

Each nonterminal from a syntax-spec declaration is realized as a compile-time
function that implements a macro expander specialized to the grammar of the non-
terminal, such as goal-expander in the figure. These DSL expanders implement
the expand and apply-spec(spec) metafunctions from the model (Page 46), special-
ized to the spec and a given ntname. Figure 7.2 provides a detailed view for the
case of the goal-expander function that expands the miniKanren fresh1 form.
The task of selecting a production matching the input syntax (select-nonterminal
in the model) is accomplished via pattern matching with syntax-parse. Like

7.1 T H E G E N E R AT E D D S L E X PA N D E R 55

(define goal-expander

(syntax-parser

[((~literal fresh1) (x:id ...) b ...)

(eval-bspec

(group (scope (bind 'x term-variable-rep)

(subexp b goal-expander)))

(hash 'x (attribute x) 'b (attribute b))

(lambda (tsubst)

(with-syntax ([(x ...) (hash-ref tsubst 'x)]

[(b ...) (hash-ref tsubst 'b)])

#'(fresh1 (x ...) b ...))))]

#| elided cases |#))

Figure 7.2: A part of the compiled expander for miniKanren goals, showing the case for
the fresh1 form.

in the model, scoping, binding, and expansion of subexpressions is orchestrated
via interpretation of the binding specification. The eval-bspec(spec) metafunction
from the model (Figure 6.2) is realized as a compile-time Racket function that is
defined in the syntax-spec library. Each case of the DSL expand functions calls
this interpreter, providing data representing the binding specification, a pattern
environment with syntax values captured from the pattern match, and a continu-
ation. The continuation realizes the application of the fill-template metafunction
from the model to the template substitution that results from evaluating the binding
specification. The continuation’s job is to reconstruct the syntax of the form around
the expanded subforms; it is implemented with a syntax-parse template.

Finally, each host-interface form in a syntax-spec declaration is compiled
to a Racket macro, such as run in Figure 7.1. The Racket expander calls the
macro when encountering a use of the boundary form, and the macro calls the
DSL expander (such as goal-expander) and then the DSL compiler provided
as part of the host-interface declaration. Ultimately the macro expands to the
Racket code generated by the DSL compiler. The expression-interface and
definition-interface decorator functions add checks to the transformers to
ensure the host-interface form is invoked in the expected expression or definition
context.

One way to understand syntax-spec is as an abstraction over a set of design
patterns used in conventional Racket macros. For example, Ballantyne, King, and
Felleisen (2020, Section 6) provide a design recipe for manually writing code
like that in Figure 7.1 to implement a DSL-specific macro expander. Compared to
syntax-spec, the low-level approach has several drawbacks. The low-level code
is much more verbose. More importantly, writing a DSL expander by hand requires
a sophisticated understanding of the “sets of scopes” hygiene model and the opera-
tional order in which macro expansion proceeds. Finally, a declarative specification
in syntax-spec is much more useful to a human reader as documentation of the

56 L AY E R I N G syntax-spec AT O P R AC K E T ’ S C O N V E N T I O N A L M AC RO S Y S T E M

structure of the language, or as a notation in which to think about and iterate on
language designs.

7.2 I N T E G R AT I N G W I T H R AC K E T V I A A R E F L E C T I V E A P I

The DSL expanders generated by syntax-spec reuse the syntax representation,
expander environment, and hygiene mechanism of Racket macro expander. The
eval-bspec interpreter for binding specifications accesses these elements via a
reflective API exposed by the host expander that includes the operations described
in Section 5.3. Reusing rather than re-implementing these parts of the host expander
is essential in order to properly integrate conventional host and DSL macros.

This integration is particularly important when a macro abstracts over a combi-
nation of host and DSL syntax. Consider the query-facts macro from Figure 2.7.
The macro is defined as a goal-macro, and will be expanded by the DSL expander.
However, the code it generates within the GE boundary form includes Racket code,
such as a reference to the unify-results function. To realize hygiene for this
Racket identifier, the scopes applied by the DSL expander must also influence the
resolution of Racket names.

Sharing the expander environment also enables cross-language name references.
Because the DSL expander creates name bindings in an environment shared with
the host expander, the host expander can recognize references to those names in
host-language code and transform them with a reference compiler (Section 2.3.1).
The shared environment also allows the host and DSL to recognize forms intended
for use in the opposite context and raise helpful error messages.

At the time I began work on macro-extensible DSLs and syntax-spec, Racket
did not expose a reflective API suitable for implementing DSL expanders. The
operations described by Flatt et al. (2012) support binding and lookup in the
expander environment and expansion of Racket subexpressions. The latter operation
includes a facility to stop expansion on certain literal form names to allow the
calling macro to provide an alternate interpretation of these forms. This is adequate
for creating extensions to Racket’s grammar that allow additional productions. For
example, the body of Racket’s class form (Flatt, Findler, and Felleisen, 2006)
accepts Racket’s usual expressions and definitions as well as class-specific forms
such as field visibility and inheritance declarations. Class body elements are parsed
by a macro that uses the above-mentioned operations. The essential thing missing
from this API is a way to expand syntax for a context that does not allow standard
Racket expression and definition forms—that is, a context where only DSL forms
are accepted.

The local-apply-transformer2 operation added by Alexis King provides
the initial fix for this shortcoming. This operation hygienically expands a macro,

2 https://docs.racket-lang.org/syntax/transformer-helpers.html#(part._syntax/

apply-transformer)

https://docs.racket-lang.org/syntax/transformer-helpers.html#(part._syntax/apply-transformer)
https://docs.racket-lang.org/syntax/transformer-helpers.html#(part._syntax/apply-transformer)

7.2 I N T E G R AT I N G W I T H R AC K E T V I A A R E F L E C T I V E A P I 57

but unlike local-expand it does not carry on to expand the output of the macro
under the expectation that it is Racket syntax. I wrapped this operation and those of
Flatt et al. into a convenient form for creating DSL expanders, with the signature
described in Section 5.3, and Ballantyne, King, and Felleisen (2020) show how
to use this API to create DSL expanders. I subsequently discovered that the way
Racket realized “sets of scopes” hygiene (Flatt, 2016a) for these operations was
subtly incorrect, and contributed a repair.3

3 https://github.com/racket/racket/pull/3927

https://github.com/racket/racket/pull/3927

8
M U LT I - L A N G U A G E E X PA N S I O N : I N T E G R AT I N G H O S T
A N D D S L

Chapters 6 and 7 explain how syntax-spec implements macro expansion and
is layered on top of Racket. However, this explanation covers only standalone
DSLs that sit within Racket but do not integrate with it. This chapter explains
how syntax-spec realizes safe multi-language interactions between a DSL and
surrounding host-language code, host-language subexpressions, the host module
system, and host IDE.

The elements that realize this integration include the following:

• A form of hygiene for DSL compilers that ensures that DSL names are
isolated from host-language code, except as explicitly specified.

• Support for host-language subexpressions via an expansion process that
suspends when they are reached and resumes their expansion when the code
generated by the DSL compiler is expanded.

• Integration with the multiple passes of expansion in Racket definition con-
texts, ensuring that DSL definitions may participate in a common mutual
recursion with host-language definitions.

• A mechanism for persisting static information about DSL code in host-
language modules to communicate across separate compilations.

• A mechanism for communicating binding structure to IDE services.

As with the basic implementation of syntax-spec described in Chapter 7, each of
these elements can be seen as an abstraction over a design pattern for programming
with conventional Racket macros. A reader may wish to skip this rather technical,
Racket-focused chapter on a first pass.

8.1 H Y G I E N E F O R D S L C O M P I L E R S

In addition to macro hygiene, discussed in Chapters 5 and 6, syntax-spec also
provides compiler hygiene for DSL compilers. Compiler hygiene ensures that code
generated by the DSL compiler is properly isolated from the surrounding host-
language code. It also assigns unique names to each binding occurrence to allow
DSL compilers to perform transformations without worrying about shadowing.

59

60 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

Consider the compilation process for the drop-2 relation:

(defrel (drop-2 lst tail)

(fresh (el rest)

(== lst (cons el rest))

(fresh (el)

(== rest (cons el tail)))))

Before invoking the DSL compiler, syntax-spec expands DSL macros and
records syntax bindings for names. For example, it creates a syntax binding for
the name drop-2 in the containing module, recording that it is a relation name
so that it is possible to check that references to this relation name are valid. Once
invoked, the miniKanren optimizing compiler (Chapter 10) performs optimizations
at the level of miniKanren syntax before generating Racket code. In this case, it
combines the fresh variable allocations into a single fresh, inlines the unification
with rest into the first unification, and drops the rest variable allocation:

(defrel (drop-2 lst tail)

(fresh (el1 el2)

(== lst (cons el1 (cons el2 tail)))))

Notice that the optimization places the two distinct el variables in the same
scope, making it necessary to distinguish them in order to avoid conflation. After
optimizing in the intermediate representation, the DSL compiler generates a Racket
procedure definition that is used to implement the relation:

;; Term Term -> State -> State

(define (drop-2fn lst tail)

(lambda (st)

(let ([el1 (var)] [el2 (var)])

(unify lst (cons el1 (cons el2 tail)) st))))

The Racket procedure is curried in order to accept a state object which is invisible
at the level of the surface syntax. It allocates fresh logic variable objects and
then performs the unification, returning a new state. The name of this procedure
definition is derived from the name of the miniKanren relation, but needs to be
distinct because the binding will co-exist in the compiled Racket module with the
syntax definition of the relation. In order to maintain the abstraction boundary
of the DSL, it should be possible to reference the generated procedure only by
compiling a reference to the corresponding surface-syntax relation name.

Compiler hygiene automates name management with respect to those these
issues. After macro expansion, syntax-spec alphatises (Steele, 1978) DSL bind-
ings and references before passing syntax to the DSL compiler. That is, it selects
a unique fresh name for each binding. Because each binding has a unique name,
the compiler can safely move bindings and references without the possibility of
unintended capture due to shadowing, so long as it does not duplicate syntax. When
a DSL compiler duplicates syntax, it must explicitly apply a renaming operation to

8.1 H Y G I E N E F O R D S L C O M P I L E R S 61

1. DSL expansion applies scope tokens (mod, rel, f1, f2) for macro hygiene:

(defrel (drop-2{mod} lst{mod,rel} tail{mod,rel})
(fresh (el{mod,rel,f1} rest{mod,rel,f1})
(== lst{mod,rel,f1} (cons el{mod,rel,f1} rest{mod,rel,f1}))
(fresh (el{mod,rel,f1,f2})
(== rest{mod,rel,f1,f2} (cons el{mod,rel,f1,f2} tail{mod,rel,f1,f2})))))

2. Alphatisation renames, using an identifier with a unique scope token for each binding:

(defrel (drop-2{1} lst{2} tail{3})
(fresh (el{4} rest{5})
(== lst{2} (cons el{4} rest{5}))
(fresh (el{6})

(== rest{5} (cons el{6} tail{3})))))

3. The miniKanren DSL compiler performs optimizations in the IR:

(defrel (drop-2{1} lst{2} tail{3})
(fresh (el{4} el{6})
(== lst{2} (cons el{4} (cons el{6} tail{3})))))

4. The miniKanren DSL compiler generates Racket code:

(define (drop-2{1} lst{2} tail{3})
(lambda (st{i})
(let ([el{4} (var)] [el{6} (var)])

(unify lst{2}

(cons el{4} (cons el{6} tail{3}))
st{i}))))

5. Racket expansion of this code applies scope tokens for Racket macro hygiene:

(define (drop-2{1,mod} lst{2,mod,def} tail{3,mod,def})
(lambda (st{i,mod,def,lam})
(let ([el{4,mod,def,lam,let} (var)] [el{6,mod,def,lam,let} (var)])

(unify lst{2,mod,def,lam,let}

(cons el{4} (cons el{6,mod,def,lam,let} tail{3,mod,def,lam,let}))
st{i,mod,def,lam,let}))))

Figure 8.1: Expansion and compilation process illustrating compiler hygiene. Superscripts
show the set of scope tokens attached to each identifier.

62 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

maintain alphatisation. The names given to the DSL compiler are fresh and cannot
conflict with names used in the surface program. As a consequence, the only way
to refer to a Racket binding created with one of these names generated for a DSL
binding is to use a name generated for the corresponding DSL reference. This
property ensures that the code generated by the DSL compiler is properly isolated
from surrounding Racket code, except as explicitly allowed by boundary forms
and reference compilers.

Figure 8.1 steps through the expansion process for the drop-2 definition to show
how compiler hygiene works. As is conventional in Racket, unique fresh names are
generated by creating an identifier that has the same symbol as the original name,
but a unique fresh scope attached to it. This approach ensures that operations that
extract just the symbol part for display to a user such as error message generation
produce the original name. Internally, syntax-spec uses a persistent table (see
Section 8.4) to map from surface syntax names to generated names. Persistent
tables work across separate compilation boundaries, ensuring that even when a
DSL name is bound in one module and referenced in another, compiler hygiene
renames the binding and reference consistently.

Compiler hygiene is distinct from macro hygiene because DSL compilers ma-
nipulate names in different ways from syntactic sugar macros. A macro defines
the scoping structure of a new form by the way it translates to existing scoping
structures. For example, the following two implementations of the miniKanren
fresh form using conventional macros yield two different scoping structures:

(define-syntax-rule (fresh (x ...) b) (let ([x (var)] ...) b))

(define-syntax-rule (fresh (x ...) b) (let* ([x (var)] ...) b))

With the first definition, only one occurrence of a given name is allowed in the
binding group. With the second definition, there may be multiple occurrences, with
the last one shadowing the others.

In contrast, the scoping structure for the DSL core syntax processed by a DSL
compiler is explicitly declared by syntax-spec’s binding specifications. Consider
the following syntax-spec production and binding specification for the fresh

form:

(fresh (x:term-variable ...) b:goal)

#:binding (scope (bind x) ... b)

Given this declaration, the miniKanren DSL compiler could compile fresh forms
to either Racket let or let* forms and yield the same behavior. This is because
the names are checked for uniqueness during DSL expansion and assigned fresh
names by compiler hygiene, so in this case the difference in scoping structures in
the generated code is not observable.

8.2 H O S T S U B E X P R E S S I O N S A N D C RO S S - L A N G UAG E R E F E R E N C E S 63

(define flights (sqlite-table [flightfrom flightto]))
(for ([row (download-flights-csv)])
 (match row
 [(list from to) (insert! flights from to)]))

(defrel (direct a b)
 (GE
 (unify-results
 (sqlite-query flights (list (ET a) (ET b)))
 a b)
))

(define (direct¹ a² b³)
 (unwrap-goal
 (unify-results
 (sqlite-query flights (list (term->val a²) (term->val b³)))
 (term->val a²)
 (term->val b³))))

Figure 8.2: The compilation ordering problem for nested boundaries. The pink layer is
DSL code, while the tan layer is host-language code.

8.2 H O S T S U B E X P R E S S I O N S A N D C RO S S - L A N G UAG E R E F E R E N C E S

When DSL code contains host-language subexpressions which in turn contain more
DSL code, the question arises in what order macro-expansion and compilation
of the various fragments should proceed. My design delays the expansion of
host-language subexpressions until they are integrated into the compilation of the
surrounding DSL code. This ordering ensures that bindings for generated names are
available in the expander environment when expanding corresponding references
generated from nested DSL code. Figure 8.2 illustrates this scenario. Notice that
the compilation of the outer fragment of DSL code produces the alphatised a2

and b3 name bindings that are referenced in the inner DSL compilations. Because
the ET host-interface form is implemented as a macro that expands to Racket,
macro-expansion of the host subexpression within the GE boundary (displayed
inset) necessarily compiles the nested DSL code and expands the result. As such,
the outer DSL code must compile to establish the bindings before the contents of
the GE boundary can be fully expanded.

Delaying expansion of the host subexpressions is almost as simple as copying
them to the expanded output unchanged. However, when the subexpressions eventu-
ally expand they will need to be processed in an expander environment that contains
bindings both from the DSL surface syntax and from the code generated by the
DSL compiler. Thus, syntax-spec wraps the suspended expansions with a macro
call that pairs the unexpanded code with a copy of the expander environment at the
point where expansion suspended. For example, the body of the GE expression of
Figure 8.2 in the result of DSL expansion will be:

64 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

(#%host-expression

(unify-results

(sqlite-query flights (list (ET a) (ET b)))

a b))

The #%host-expression form is a macro whose transformer resumes the sus-
pended expansion after adding the captured environment to the current expander
environment. The syntax to resume expanding is its body. The closed-over ex-
pander environment is attached to the #%host-expression form. Racket sup-
ports attaching such additional data via syntax properties, which are key-value
associations stored within syntax objects. When Racket expansion invokes the
#%host-expression macro, the macro uses Racket’s local-expand API to add
the closed-over entries to the expander environment and continue expansion. At
this point the bindings for surface-syntax names and their counterparts in the DSL
compilation are both available in the environment.

Delaying expansion of host-language subexpressions also means delaying the
alphatisation of names in nested DSL code that is performed by compiler hy-
giene (Section 8.1). This complicates the hygienic expansion of the compiled
code. When alphatisation generates a fresh name for the name a in Figure 8.2,
for example, it produces the identifier a{2} with a single fresh scope. However,
expansion of the generated code will add scopes for the module and the define

procedure body to yield the identifier a{2,mod,body} before it is bound in the expander
environment. Because expansion of the host subexpression inside the GE form is
delayed, compilation of the (ET a) reference to the alphatised Racket name a{2} is
also delayed until after the mod and body scopes have already been painted on the
syntax. Without additional special behavior, this would make it impossible for the
reference to resolve to the binding. To fix this problem, alphatisation of references
uses Racket’s syntax-local-get-shadower operation to apply extra scopes. The
Racket expander tracks the lexical scopes corresponding to surrounding scoping
forms at the current point of expansion, and the syntax-local-get-shadower

operation adds these scopes to an identifier.1 Thus while a{2} is recorded as the
alphatisation of a, the additional scopes are also added to the reference to yield
a{2,mod,body} .

R E F E R E N C E C O M P I L E R S As introduced in Section 2.3.1, binding class dec-
larations can provide a reference compiler that defines the meaning of a DSL name
when it is referred to directly from Racket code. For example, the binding class
for miniKanren term variables declares that such references are compiled with an
implicit ET value-translation boundary:

(binding-class term-variable #:reference-compiler compile-ET)

1 https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote.
_~23~25kernel%29._syntax-local-get-shadower%29%29

https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote._~23~25kernel%29._syntax-local-get-shadower%29%29
https://docs.racket-lang.org/reference/stxtrans.html#%28def._%28%28quote._~23~25kernel%29._syntax-local-get-shadower%29%29

8.3 I N T E G R AT I N G W I T H H O S T D E F I N I T I O N C O N T E X T S 65

The implementation of reference compilers elaborates on the structure types inherit-
ing from binding-class-rep in Figure 7.1 of Chapter 7. For binding classes that
implement a reference compiler, the underlying structure type’s implementation
of the prop:set!-transformer protocol alphatises the name and invokes the
reference compiler rather than raising a syntax error.

D R AW B AC K S O F D E L AY E D E X PA N S I O N The design choice to delay ex-
pansion of host-language subexpressions poses problems for some DSL compilers.
The host-language code is not yet in a form that can be analyzed or manipulated.
Computing the free variables of host expressions is only possible by eagerly forc-
ing their expansion, which may fail if there is further DSL code inside. It is also
not possible to perform renamings within host expressions using the operations
described in Appendix A.2.2.4. While none of these features are needed for the
case studies examined in Chapter 14, I anticipate exploring an alternate, eager
expansion order for host subexpressions in the future. This approach will require
deeper integration with the Racket expander in order to macro-expand DSL code
nested within host-language subexpressions without also immediately compiling
this DSL code to Racket.

8.3 I N T E G R AT I N G W I T H H O S T D E F I N I T I O N C O N T E X T S

The implementation of definition host-interface forms requires care to integrate the
passes of syntax-spec expansion and compilation with the two-pass expansion
process for Racket definition contexts. Like expansion for syntax-spec’s export-
ing nonterminals (Section 6.1), expansion for Racket definition contexts proceeds
in two passes. The first pass registers bindings for defined names. The second
pass expands definition right-hand sides. When DSL definition forms contribute
bindings to host definition contexts, both DSL expansion and compilation to Racket
code need to be split between the two passes to work properly. DSL expansion
must be split between the passes to support mutual recursion at the level of the
DSL surface syntax. Compilation must be split in order to support mutual recursion
in the generated code.

The design of host-interface/definition declarations makes it possible
to split out the portions that must happen in each pass. Figure 8.4 reproduces
the definition of the defrel host-interface form from Figure 2.2, annotating it to
show which portions relate to each pass of expansion and compilation. Definition
host-interface forms use exporting binding rules (Section 6.1), which segment out
portions that occur in the first pass of expansion with the export and re-export

forms. Here, the binding of the relation name r is declared with an export rule,
so it is created during the first pass of expansion of the surrounding definition
context. Binding of the relation arguments x ... and expansion of the body goal
g do not use the exporting binding rule forms, so these steps are deferred to the
second pass. The compilation task is segmented into the two passes via the #:lhs

66 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

(host-interface/definition

(defrel (r:rel-name x:term-variable ...+)

g:goal)

#:binding [(export r)

(scope (bind x) ... g)]

#:lhs [#'r]

#:rhs [(compile-relation #'(x ...) #'g)])

Figure 8.3: The host-interface form declaration for miniKanren relation definitions. Por-
tions that relate to pass 1 expansion and compilation are underlined. Portions
that relate to pass 2 expansion and compilation are doubly underlined.

and #:rhs clauses of the declaration. The #:lhs clause generates the name for
the Racket definition that a DSL definition compiles to. It executes during the
first pass of expansion for the surrounding definition context. The #:rhs clause
generates code for the right-hand side of the Racket definition. It executes during
the second pass, when the Racket expander returns to expand the right-hand side
of each definition. Here the generated right-hand side is a lambda expression
implementing the relation.

Integrating with the host’s two-pass expansion process requires yielding control
to the host expander at two points. In each case, syntax-spec yields code for the
host expander to process and arranges to continue its own expansion process by
including in this code a call to a continuation macro. Figure 8.4 illustrates these
two patterns of control flow.

Y I E L D I N G D E F I N I T I O N S F O R E X P O RT E D N A M E S The first case in which
syntax-spec yields to the host expander is to create a DSL name binding follow-
ing an export binding rule. The relation name all-same in Figure 8.4 is bound in
this way. This relation name is intended to be visible in the surrounding definition
context, which may be a module body. The only way to register a binding in a
module is to expand to a define or define-syntax form in the module body.
This restriction ensures that the binding will also be available when the module is
loaded for the separate compilation of a dependent module (Flatt, 2002). Thus, the
defrel macro in Figure 8.3 must expand to a define-syntax form that records
all-same as a relation name. Furthermore, syntax-spec must wait to continue
further DSL expansion until this definition is processed by the host expander,
because the new binding may shadow the name of a syntactic form and thus change
how subsequent syntax is parsed.

The first step of expansion in Figure 8.4 shows how syntax-spec yields to the
host expander to allow it to process such a definition. The defrel macro gener-
ated by syntax-spec expands to a begin form containing the define-syntax

to be processed by the host expander and a continue-pass1 macro invocation
that resumes syntax-spec expansion. The computation that must suspend is

8.3 I N T E G R AT I N G W I T H H O S T D E F I N I T I O N C O N T E X T S 67

(defrel (all-same a b c) (conj (== a b) (b c)))

1. In host pass 1, syntax-spec begins pass 1 expansion of the defrel and generates
a syntax definition for the relation name. The continue-pass1 macro call contains a
continuation that resumes syntax-spec expansion once the define-syntax has been
processed.

(begin

(define-syntax all-same (rel-name-rep))

(continue-pass1 #<procedure>))

2. Continuing host pass 1, syntax-spec completes pass 1 expansion of the defrel and
generates the corresponding Racket define, with a macro call on the right-hand side to
continue expansion in host pass 2.

(begin

(define-syntax all-same (rel-name-rep))

(define all-same1

(defrel-pass2

(defrel (all-same1 a b c) (conj (== a b) (== b c))))))

3. In host pass 2, expansion continues into the define right-hand side. The defrel-pass2
macro triggers syntax-spec pass 2 expansion which eliminates the conj DSL macro
and alphatises. Finally, defrel-pass2 emits a call to the DSL compiler macro for the
right-hand side, compile-relation.

(begin

(define-syntax all-same (rel-name-rep))

(define all-same1

(compile-relation (a2 b3 c4) (conj2 (== a2 b3) (== b3 c4)))))

4. Continuing host pass 2, the DSL compiler generates Racket code for the RHS.

(begin

(define-syntax all-same (rel-name-rep))

(define all-same1

(lambda (a2 b3 c4)

(lambda (st)

(bind (unify a2 b3 st)

(lambda (st) (unify b3 c4 st)))))))

Figure 8.4: Annotated trace of the expansion process for a use of the defrel host-interface
form defined in Figure 2.2 in a Racket definition context.

68 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

the interpretation of the binding specification, performed by the eval-bspec in-
terpreter (Chapter 6). This interpreter is structured in direct style. To suspend it,
syntax-spec uses Racket’s support for delimited continuations. When the in-
terpreter invokes the operation to bind a name, this operation captures the state
of the interpreter in a continuation, and attaches this continuation value to the
continue-pass1 macro call. When this macro is invoked, it invokes the continua-
tion to resume syntax-spec expansion.

Y I E L D I N G C O N T RO L U N T I L T H E S E C O N D PA S S The second case in
which syntax-spec yields to the host expander is when it completes pass 1
expansion of the definition form and is ready to generate a Racket define. At this
point, pass 2 of DSL expansion and the compilation needed to generate the right-
hand side of the define is not yet complete. But before this further expansion and
compilation can occur, the host expander must register the name of the compiled
define and complete pass 1 expansion for other definitions in the module. Only
once the names of all definitions have been registered can DSL compilation for the
right-hand side continue.

Steps 2–4 of Figure 8.4 show how syntax-spec orchestrates this process. After
completing pass 1 expansion, syntax-spec expands to a define form with a
continuation macro call on the right-hand side. This continuation macro is invoked
when the host expander reaches the definition in pass 2 expansion.

Unlike the case above that requires delimited control, here it is easy to sepa-
rate out the pass 1 and pass 2 expansion processes into separate macros as part
of syntax-spec compilation. Thus, pass 1 expansion for a defrel is accom-
plished by the defrel macro, while pass 2 expansion is accomplished by a hidden
defrel-pass2 macro generated by syntax-spec. This second macro receives as
input DSL syntax that has been expanded and reconstructed by pass 1 expansion.
In step 2 of Figure 8.4, this is the complete syntax of the defrel form, where the
all-same1 name has been alphatised by pass 1 expansion. After completing pass 2
expansion and alphatisation, the defrel-pass2 macro invokes the DSL compiler
provided in the #:rhs clause of the host-interface definition.

8.4 P E R S I S T I N G S TAT I C DATA I N H O S T M O D U L E S

In multi-language semantics, typing judgments track static information for names
from both parts of the multi-language (Matthews and Findler, 2007). This allows
fluid interactions between the parts. For example, if DSL code establishes name
bindings, then those names may be referenced from DSL code nested within a host
subexpression, across two language boundaries. When syntax-spec DSLs are
used within Racket modules, definitions of DSL entities, such as a miniKanren
relation, often occur in one host-language module but are used in another. Check-
ing static semantics for such a reference requires accessing static information
across the boundaries connecting the DSL with host modules. The syntax-spec

8.4 P E R S I S T I N G S TAT I C DATA I N H O S T M O D U L E S 69

system provides a new abstraction for such communication: persistent symbol
tables (Appendix A.2.2.3). These tables allow a DSL compiler to record compile-
time information associated with DSL name bindings. These entries are globally
visible, so they can be accessed across language boundaries. Table extension is
restricted to be monotonic to avoid pitfalls due to ordering of effects. Entries
are keyed by name bindings rather than just names, so the tables also integrate
smoothly with hygiene.

Crucially, persistent symbol table entries persist across separate compilations.
For example, the compilation of a defrel defining the all-same relation in
module A may create a symbol table entry recording that the relation has three
parameters. The expander writes the compiled module A to a file, and the Racket
virtual machine shuts down. Suppose module B depends on module A. Then the
Racket expander processing module B in a new instance of the Racket virtual
machine loads module A in order to access its syntax definitions and other static
information. Persistent symbol tables ensure that entries recorded during the expan-
sion of module A will be available during the expansion of the dependent module
B. Thus, compilation of a call to the all-same relation can consult the symbol
table to check that the call has the correct number of arguments.

The implementation of persistent symbol tables abstracts over a pattern used by
conventional Racket macros. Racket’s module system (Flatt, 2002) allows macros
to generate code that performs side effects each time a module is visited—that is,
loaded to support the expansion of another module. For example, the macro that
implements defrel could include in its expansion code like the following:

(begin-for-syntax

(free-id-table-set! relation-arity #'all-same 3))

A begin-for-syntax block at module level denotes code to execute each visit.
In this case, the code mutates a global relation-arity table.

Unfortunately this pattern of expanding to visit-time code is awkward to use in
complex DSL compilers. A compiler pass that traverses DSL syntax to perform a
static check may need to create and consult many table entries as it performs the
traversal. Entries created via the pattern of expanding to visit-time code are only
accessible once that code executes after the DSL compiler macro expands, so they
cannot be consulted during the local compilation. Furthermore, some entries do
not need to persist across separate compilations because they relate to local names,
whereas other entries need to persist. Such a static check would need to maintain
a separate, transient table as local state and then manually reflect the selection of
entries that need to persist into a begin-for-syntax block as above.

Persistent symbol tables provide a simpler interface. Adding an entry to a
persistent symbol table with symbol-table-set! has immediate global effect,
and entries automatically persist across separate compilations (only) if the key is a
module-level name. Under the hood, a persistent symbol table is implemented with
a combination of two free-identifier tables, which are tables keyed by identifier’s

70 M U LT I - L A N G UAG E E X PA N S I O N : I N T E G R AT I N G H O S T A N D D S L

hygienic binding identities.2 One holds entries transiently, while the other holds
entries that persist via the begin-for-syntax pattern discussed above. Entries are
initially placed in the transient table. At the end of the execution of the #:lhs DSL
compiler clause of a definition host-interface form, syntax-spec automatically
reflects entries into a begin-for-syntax block. This moves the entries from the
transient portion of the table to the persistent portion. Lookup in the table consults
each of the underlying tables in turn.

8.5 R E C O R D I N G I N F O R M AT I O N F O R T H E I D E

Properly integrating syntax-spec DSLs with Racket also means integrating with
the Racket IDE (Findler et al., 2002). If programmers are to experience Racket
and the DSL together as a multi-language system, then the Racket IDE needs to
understand DSL code as well as cross-language interactions. In particular, Racket’s
IDE needs information about bindings and references in order to provide services
such as jump-to-definition and arrows that point from references to their bindings.

It is straightforward to analyze code in Racket’s core syntax to identify bindings
and references. However, syntax defined by macros poses a challenge. Racket’s
approach is to augment syntax objects with source location information to track
the textual origin of syntax during expansion. Then, it analyzes the fully-expanded
core syntax and uses the attached source location information to correlate to posi-
tions in the surface syntax. This technique works well for macros that implement
simple syntactic sugar, but is inadequate in the presence of sophisticated DSL
compilers. The Racket code output by a DSL compiler may not include bindings
and references corresponding to every surface-syntax binding and reference. For
example, some may be eliminated by a dead-code removal optimization. When this
happens, the source-location correlation approach will not recognize these surface-
syntax bindings and references. Macros can work around the problem by manually
annotating syntax with ’disappeared-use and ’disappeared-binding syntax
properties.3 Identifiers included in these properties are treated as references and
bindings, respectively, by the IDE’s analysis.

Because syntax-spec requires binding structure declarations, it avoids the
pitfalls of source-location correlation for DSL compilers. The DSL expanders
generated by syntax-spec capture information for the IDE when they process
bindings and references following the DSL’s binding specification. They ulti-
mately convey this information to the IDE by attaching ’disappeared-use and
’disappeared-binding syntax properties on the output of host-interface form
expansions. Unlike with conventional macros this requires no extra work on the
part of the DSL creator. Because binding information is captured by the DSL

2 https://docs.racket-lang.org/syntax/syntax-helpers.html#%28part._.

Dictionaries_for_free-identifier~3d_%29

3 https://docs.racket-lang.org/tools/Check_Syntax.html#%28idx._%28gentag._47._%

28lib._scribblings%2Ftools%2Ftools..scrbl%29%29%29

https://docs.racket-lang.org/syntax/syntax-helpers.html#%28part._.Dictionaries_for_free-identifier~3d_%29
https://docs.racket-lang.org/syntax/syntax-helpers.html#%28part._.Dictionaries_for_free-identifier~3d_%29
https://docs.racket-lang.org/tools/Check_Syntax.html#%28idx._%28gentag._47._%28lib._scribblings%2Ftools%2Ftools..scrbl%29%29%29
https://docs.racket-lang.org/tools/Check_Syntax.html#%28idx._%28gentag._47._%28lib._scribblings%2Ftools%2Ftools..scrbl%29%29%29

8.5 R E C O R D I N G I N F O R M AT I O N F O R T H E I D E 71

expander, DSL compilers may perform optimizations that eliminate bindings and
references without impacting IDE services.

9
R E F L E C T I O N : H Y G I E N I C E X PA N S I O N A N D B I N D I N G
S P E C I F I C AT I O N S

Having explained how the syntax-spec expander uses binding specifications
to hygienically expand DSL code in Chapter 6, we can now explore how this
requirement constrains the design of the binding specification language. Two major
issues stand out.

9.1 M AC RO E X T E N S I B I L I T Y A N D E X PA N S I O N O R D E R

To equip DSL macros with the same power as Racket macros, syntax-spec
allows DSL macro definitions to shadow value definitions and vice versa. This
affordance demands that the processes of understanding binding and expanding
macros be interleaved. As a consequence, the order of expansion in scopes with
mutually-recursive definitions is observable, and syntax-spec must allow its
explicit specification.

(define-syntax-rule

(def v e)

(define v e))

(define-syntax-rule

(res)

"outer")

(block

(begin

(def res (lambda () "inner")))

(res))

(define-syntax-rule

(def v e)

(define v e))

(define-syntax-rule

(res)

"outer")

(block

(define (f) (res))

(def res (lambda () "inner"))

(f))

Figure 9.1: The significance of expansion order in mutually-recursive scopes

To make this point concrete, consider the Racket programs in Figure 9.1, and
assume that Racket’s binding structure has been specified with syntax-spec. Both
programs should evaluate to "inner". In both programs, the expansion of the
use of the def macro must happen first. The macro introduces a new variable
definition of the name res that shadows the original macro definition res, so it is
essential that it expand before the macro use (res). Subforms of Racket’s begin
are intended to include definitions that contribute bindings to the surrounding
context. So it makes sense to expand the subform first and then the sibling form.
However, that order does not work for define, which supports mutually recursive
definitions. Supporting mutual recursion requires discovering all the defines in

73

74 R E F L E C T I O N : H Y G I E N I C E X PA N S I O N A N D B I N D I N G S P E C I F I C AT I O N S

the block in a first pass to determine bound names and only in the second pass
expanding the define right-hand-sides, which cannot contribute bindings.

To decide in which pass a macro should expand, syntax-spec needs to know
whether the subforms mentioned in a binding rule can contribute new bindings
to the current context or are guaranteed not to. The type distinction between
exporting nonterminals (nonterminal/exporting) versus standard nonterminals
provides syntax-spec with this information. An alternative design could infer
this exporting information rather than rely on an explicit, syntactic distinction, but
because its behavior observably differs from the standard one, I prefer the explicit
design.

9.2 H Y G I E N E

“Sets of scopes” hygiene demands a certain order of scope-painting operations
within the expander and thus imposes a restriction on the binding language design.

(define x "outer")

(define-syntax-rule (m a) (list x a))

(block

(define x "inner")

(m x))

;; expands to (with scope tokens)

(define x{𝑎lex } "outer")

(block

(define x{𝑎lex, 𝑏lex } "inner")

(list x{𝑎lex, 𝑐mac } x{𝑎lex, 𝑏lex, 𝑑use }))

Figure 9.2: The expander must attach scope before expanding the block body

Figure 9.2 shows an example of a situation that motivates the restriction. Recall
from Section 5.1 that scope sets uses lexical scope tokens to prevent use-site context
captures of free references in macro templates. The key scope token in this example
is the underlined 𝑏lex. In order for 𝑏lex to appear on the x originally from the macro
use (m x) but not on the x from the macro template, the expander must paint this
𝑏lex token on the body of the block before expanding the macro use.

However, before the macro use (m x) is expanded, the role of the identifiers
contained in the use is unknown. They may be binders, references, or names of
syntactic forms; they may belong to the current scope or a more nested one. It is
only possible to justify painting the scope 𝑏lex because the scoping structure can be
conservatively approximated: regardless of the roles of the identifiers within the
block, they definitely belong inside the block scope.

Because syntax-spec is designed with the goal of implementing hygienic
expansion via scope sets, it can express only binding structures where this ap-
proximation is valid. Python’s nonlocal and global keywords1 are examples of
features with binding structure for which the approximation would be invalid. The
restriction is reflected in the syntax of the binding specification language in that
the Scope rule works by lexical containment: all contained subforms are uncondi-
tionally part of the scope. By contrast, other binding specification languages such

1 See https://docs.python.org/3/reference/simple_stmts.html#

the-nonlocal-statement.

https://docs.python.org/3/reference/simple_stmts.html#the-nonlocal-statement
https://docs.python.org/3/reference/simple_stmts.html#the-nonlocal-statement

9.2 H Y G I E N E 75

as Statix (Antwerpen et al., 2018) allow scopes to be passed as values but do not
realize macro extensibility. In such languages, binding rules may associate such
scopes with syntax conditionally based on other factors such as type information.

Part III

A P P L I C AT I O N S A N D E VA L U AT I O N

A P P L I C AT I O N S A N D E VA L U AT I O N

This part examines a number of DSL implementations built with syntax-spec

and uses these implementations to evaluate the effectiveness of its design.

D S L I M P L E M E N TAT I O N S Chapters 10 and 11 present the largest DSL imple-
mentations I built using syntax-spec: a miniKanren with an optimizing compiler
and a Parsing Expression Grammars DSL. These implementations each come with
a static semantics and optimizing compiler that take advantage of the syntax-spec
macro system’s features.

Chapter 12 presents a variety of other syntax-spec DSL implementations I
created. This collection of languages helps test the expressivity of syntax-spec’s
declaration language. These DSLs include state machines, a reimplementation of
a subset of Racket’s class system, a command-line argument parser, a reimple-
mentation of a small hardware-description language, and a multi-stage variant of
miniKanren (Ballantyne et al., 2025).

Chapter 13 presents DSLs created by other programmers since the public re-
lease of syntax-spec. Cameron Moy leveraged syntax-spec in his research on
“domain-specific contract languages” (Moy, Jung, and Felleisen, 2025) for specify-
ing properties of Racket programs. Each of these DSLs implements a different logic
for validating properties of traces of events that are captured by a trace contracts
system. Additionally, students from the "hack your own language" course I taught
in Spring 2025 created new implementations of a teaching language for logical
specifications and a finite-choice logic programming language. Finally, developers
in the Racket community created DSLs for point-free programming and pattern
matching using lenses.

E VA L UAT I N G syntax-spec These DSL implementations provide an op-
portunity to evaluate the syntax-spec design. The unique design choice of
syntax-spec is to conceptualize DSLs as extensions to a multi-language system.
Thus, a first question is whether DSLs in practice benefit from the multi-language
structure. That is, whether they can leverage fine-grained interaction with the host
while simultaneously realizing domain-specific static semantics and optimizing
compilation in a sound manner.

Beyond this basic question I evaluate additional issues of expressive power
and utility. The syntax-spec system relies on declarative specifications of syn-
tax and binding structure. Thus, a second question is whether the specification
language is expressive enough to capture the desired syntax and binding rules of
all the DSLs. Given a specification, a third question is whether the services that
syntax-spec provides are useful to support the implementation of DSL static

79

80 PA RT I I I : A P P L I C AT I O N S A N D E VA L UAT I O N

semantics and optimizing compilation. The system also automatically provides
hygienic macro extensibility, so a fourth question is whether this extensibility is
useful for implementing desugaring and end-user extensions in practice.

A fifth question is to what degree the syntax-spec metalanguage yields shorter
implementations and requires less programmer expertise as compared to low-
level macro programming. It is after all possible to implement multi-language
and macro-extensible DSLs in Racket directly using the same reflective APIs that
syntax-spec uses under the hood. The syntax-spec metalanguage is designed
to provide a concise and accessible abstraction over these techniques. Finally,
a sixth question is whether the expansion-time performance of syntax-spec is
acceptable.

The chapters in this part covering DSL implementations discuss how each DSL
takes advantage of syntax-spec and where they run into difficulties. Chapter 14
summarizes these results into a holistic evaluation and addresses the further issues
of comparative concision and expansion-time performance.

10
T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

This chapter explores the syntax-spec-based miniKanren implementation from
Chapter 2 in more depth. In particular, it focuses on the benefits of the multi-
language architecture. Programs gain expressive power from the combination of
DSL and host-language code. Macros can abstract over this combination to extend
the DSL. At the same time, the multi-language boundaries protect the abstractions
of the DSL, making optimization compilation safe. The content of this chapter is the
result of collaborative work with Mitch Gamburg and Jason Hemann (Ballantyne,
Gamburg, and Hemann, 2024). As such, this chapter uses the plural pronoun “we”
to refer to the authors.

10.1 E X T E N S I O N A N D M I X I N G L I K E A S H A L L O W E M B E D D I N G

Using syntax-spec imbues our miniKanren implementation with the same pow-
ers of extension and intermixing of DSL and host-language code one gets with a
shallow embedding. Specifically, miniKanren programmers can extend the syn-
tax of the DSL with macros, and they can commingle host and DSL code in a
disciplined manner with boundary forms.

Programmers working in shallow embeddings of miniKanren have dreamed up
many language extensions and developed applications that take advantage of the
ability to intermix miniKanren and Racket. Together these programs make the
miniKanren ecosystem a kind of natural experimental environment.

In this section, we reproduce some of these examples. By doing so, we show
how syntax-spec endows an optimizing implementation with the same freedom
of language extension and intermixing as a shallow embedding—with little effort.

10.1.1 Extensibility

Many of those programmer-designed extensions to shallow miniKanren embed-
dings are simple host-language macros. Hence it is perhaps unsurprising that we
can similarly implement them as DSL macros. The DSL programmer uses the
same extension mechanism as the DSL designer does for syntactic sugar. The only
difference between an end-programmer language extension and built-in syntactic
sugar is who designs it. Since DSL extensions are macros that expand to DSL
core-language code, the compiler’s expectations about the source code continue to
hold.

Concretely, some shallow miniKanren implementations include a matche (Keep
et al., 2009) pattern-matching form, like that used in route of Figure 2.6. The

81

82 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

first form in each matche clause is a pattern. The process of pattern matching
introduces the necessary logic variables and unifies a term corresponding to the
pattern against the relation parameters.

The matche implementation is a fairly pedestrian goal-macro, which we show
in Figure 10.1. The implementation compiles each pattern group to a term expres-
sion pats^ and a list of pattern variables xs. This process relies on the compile
time helper function compile-pats, whose definition we omit. The macro then
constructs a goal that introduces a name for the arguments list followed by a conde.
Each conde clause introduces the pattern variables with fresh, unifies the term
expression pats^ with the arguments list, and executes the sequence of goals g ...

as a conjunction.
Since the host and DSL use the same extension system—an explicit design goal

of syntax-spec—we can even write macros that generate mixed-language code.
For instance, a programmer might want to express a relation definition like route
even more concisely. In route, we list the parameters in the header, and then
match against that same parameter list. We can abstract over that duplicated syntax
with defrel/matche, an ordinary Racket macro that generates a defrel with a
matche as its body. The top of Figure 10.2 shows the definition, and the bottom
contains a re-implementation of route using this new abstraction.

10.1.2 Mixing DSL and Host-Language Code

Sometimes miniKanren programmers want just a touch of Racket inside their
miniKanren programs. The miniKanren language is a distillation of purely rela-
tional constraint logic programming that deliberately eschews features such as side
effects and higher-order control flow. However, sometimes you just need to do a
little printf debugging.

Figure 10.3 demonstrates how a programmer can write ordinary Racket code
within a miniKanren program. This interaction relies on the GE, EG, and ET boundary
forms declared in Figure 2.2. Recall that the GE boundary form allows a miniKanren
programmer to include some Racket code inside a goal. In this example, the
Racket code constructs a string containing information about the variable q and its
value. This string construction relies on yet another cross-language boundary to
access a miniKanren term variable from the Racket context. The ET form admits a
miniKanren term in a Racket context; the cross-language translation of the value is
trivial except for fresh miniKanren logic variables, which are opaque to the Racket
context. The final line in the GE form contains an ordinary Racket function call to
succeed/print, which consumes and prints a string.

Beyond allowing Racket code to access term variables and perform side effects
in the context of a goal, GE also allows Racket code to define the behavior of the
goal—whether it succeeds or fails, and whether it constrains any variables. The
succeed/print body returns a goal value created by the EG boundary form to
represent this behavior. In this example the goal is simply succeed—Section 10.1.3

10.1 E X T E N S I O N A N D M I X I N G L I K E A S H A L L O W E M B E D D I N G 83

(define-dsl-syntax matche goal-macro

(syntax-parser

[(matche (arg ...+) [pats g ...] ...+)

#:with ([pats^ xs] ...) (map compile-pats (attribute pats))

#'(fresh (ls)

(== ls (list arg ...))

(conde [(fresh xs (== pats^ ls) g ...)] ...))]))

;; (Listof Pattern) -> (Pair Term (Listof TermVar))

(define (compile-pats pats) #| elided |#)

Figure 10.1: The implementation of the matche pattern matching extension.

(define-syntax defrel/matche

(syntax-parser

[(defrel/matche (name:id arg:id ...+)

clause ...+)

#'(defrel (name arg ...)

(matche (arg ...) clause ...))]))

(defrel/matche (route origin end path)

[(a a '())]

[(a b (cons (list a layover) remainder))

(absento a remainder)

(direct a layover)

(route layover b remainder)])

Figure 10.2: The defrel/matche macro and an even more concise re-definition of the
route relation.

> (define (succeed/print str)

(printf str)

(EG succeed))

> (run 1 (q)

(fresh (x)

(== q (list x 'cat))

(GE

(let ([str (format "value of ~a: ~a\n" 'q (ET q))])

(succeed/print str)))))

value of q: (#<mk-lvar> cat)

'((_.0 cat))

Figure 10.3: Using Racket to construct and print a string through the host FFI.

84 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

(GE (let ([str (format "~a: ~a\n" 'q (ET q))])

(printf str)

(EG succeed)))

;; -Compiles to->

(lambda (state)

(define goal-val

(let ([str (format "~a: ~a\n" 'q (translate-term

(substitute q-rt state)))])

(printf str)

(seal-goal succeed-rt)))

(apply-goal (unseal-goal goal-val) state))

Figure 10.4: The above GE sub-form from the example in Figure 10.3 compiles to the
below Racket implementation code. We have in-lined here the body of
succeed/print in both examples for clarity.

shows a more sophisticated use. An additional boundary form TE form allows
Racket code to compute a term; it is not used in this example.

As mentioned in Section 2.3.1, connecting the parts of a multi-language safely
involves inserting value translations or contracts at the boundaries. To show how
these translations are inserted, Figure 10.4 illustrates the compilation of the example
in Figure 10.3. The compilation of each cross-language boundary inserts a call to a
value translation function. Together, seal-goal and unseal-goal implement the
lump embedding for goal values. The translate-term operation is responsible for
implementing the natural embedding of term values, translating term data to Racket
values while sealing logic variables. This Racket-safe version of a miniKanren
term can find its way back to a miniKanren context through TE, which unseals the
logic variables.

Some of the boundary forms need to access information from the miniKanren
state. In our runtime, the current value of a logic variable depends on the received
state, which contains information on the history of unifications during the program’s
execution. We implement goals as functions from a state to a stream of states
representing the nondeterministic result of the goal. In Figure 10.4, the GE form
compiles to such a function, making the state variable accessible to the generated
code within. The compilation of ET uses this state with substitute to fill in
known logic variable values before passing the term to Racket. The compilation of
GE uses the state via apply-goal to continue execution with the goal produced by
the Racket code.

10.1 E X T E N S I O N A N D M I X I N G L I K E A S H A L L O W E M B E D D I N G 85

10.1.3 Host Code in DSL Extensions

The synthesis of extensibility and host-language interoperation produces some
surprisingly powerful behaviors. For instance, the PL enthusiast will quickly tire of
writing and rewriting that same kind of printf logic from Section 10.1.2. Instead,
the informed enthusiast will instinctively reach for the means to abstract over
syntactic boilerplate: macros.

(define-syntax trace-defrel

(syntax-parser

[(_ (name:id a*:id ...) b:goal/c)

#'(defrel (name a* ...)

(GE (begin (printf "~s\n" (list 'name a* ...))

(EG b))))]))

Figure 10.5: The trace-defrel form combining extension with host FFI interaction

For example, the trace-defrel macro in Figure 10.5 provides a quick way for
the programmer to see the values of a relation’s arguments at every entry to that
relation. Users of trace-defrel need not even be aware that it uses cross-language
code, because it is all is hidden behind the abstraction. This particular macro
is defined with Racket’s standard define-syntax rather than syntax-spec’s
define-dsl-syntax because relation definitions sit at the boundary between
miniKanren and Racket.

As previewed in Section 2.2, database access provides a substantial application
of the combination of syntactic extension and host interoperation. Recall that Fig-
ure 2.6 re-implements the direct flights relation using an extension that connects
miniKanren to an SQLite database. We now have all the pieces we need to explain
the extension’s implementation in detail. The define-facts-table form is a
standard Racket macro. It expands to code that uses the Racket database library
to create and populate an SQLite database table; we elide its implementation. More
interesting is the query-facts goal macro defined in Figure 10.6, which straddles
the boundary between Racket and miniKanren.

(define-dsl-syntax query-facts goal-macro

(syntax-parser

[(_ table term ...)

#'(GE (query-facts-rt table (list (ET term) ...)))]))

Figure 10.6: The query-facts goal macro combining extension with host FFI interaction.

The query-facts macro consumes a reference to a facts table and a sequence
of miniKanren term expressions that should evaluate to either atomic miniKanren
values or logic variables. The macro expands to a goal formed from a Racket
expression that, at runtime, actually executes a database query. The expansion

86 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

;; Table (Listof TermVal) -> GoalVal

(define (query-facts-rt table terms)

(define matching-rows (do-query table (map wildcardify terms)))

(unify-query-results matching-rows terms))

;; TermVal -> (Or Atom Wildcard)

;; THROWS when term is instantiated to a non-atom

(define (wildcardify term) #| elided |#)

;; Table (Listof (Or Atom Wildcard)) -> (Listof (Listof Atom))

(define (do-query table args) #| elided |#)

;; (Listof (Listof Atom)) (Listof TermVal) -> GoalVal

(define (unify-query-results query-res args)

(match query-res

['() (EG fail)]

[(cons fst rst)

(EG (conde

[(== fst args)]

[(GE (unify-query-results rst args))]))]))

Figure 10.7: The runtime portion of the query-facts extension.

leverages the ET multi-language boundary form to check that the argument syntax
term is valid term syntax and to convert the term value to a Racket value for use in
the runtime helper.

The implementation of the runtime support for the extension is presented in Fig-
ure 10.7. The entry point query-facts-rt relies on three helper functions. First, it
uses the wildcardify function to transform sealed logic variables into a “select all”
wildcard that the database understands. Then, it executes the query with do-query

to produce a list of matching table rows. Finally, it uses unify-query-results to
non-deterministically unify the original term arguments with each possible option
returned from the database. The wildcardify and do-query implementations are
straightforward Racket functions using parts of the miniKanren runtime and Racket
database library. The unify-query-results function has the most interesting
multi-language interaction.

The unify-query-results function takes an arbitrarily long list of matching
rows from the database lookup and produces a goal that non-deterministically
unifies args with each of these values in turn. These unifications can fail because
of delayed constraints (like absento from Figure 2.3) that cannot map directly to
restrictions in the query. When the list of results is non-empty, the function returns
a conde goal to implement that nondeterministic choice. In the second disjunct
we make the recursive call to unify-query-results. This mixing of recursive
Racket computation with goal construction relies on nested language boundaries.

10.2 O P T I M I Z I N G L I K E A D E E P E M B E D D I N G 87

To the miniKanren programmer using it in Figure 2.6, the query-facts exten-
sion looks like any other miniKanren form. Creating a DSL extension lets us hide
the implementation details of complex cross-language operations behind simple,
familiar looking syntax.

10.2 O P T I M I Z I N G L I K E A D E E P E M B E D D I N G

Like in a deep embedding, our miniKanren compiler has access to a syntactic
representation of DSL program fragments, and it can thus realize all kinds of
optimizations. It uses a traditional multi-pass compiler architecture with a num-
ber of standard optimizations. The generated code uses the runtime system from
faster-miniKanren (Ballantyne, 2024). The overall architecture provided by
syntax-spec ensures that code generated by extensions benefits from optimiza-
tions, too. Most notably, our compiler works carefully around host-language code
contained in miniKanren goals to optimize where possible while accounting for the
host-language code’s unknown behavior. In some sense, the details of the optimiza-
tions and the performance they yield are straightforward, but they do demonstrate
that a syntax-spec DSL can be equipped with a standard compiler back-end. To
underline how effective the compiler is, we show at the end of this section that our
compiler produces substantial and even asymptotic performance improvements.

10.2.1 Optimizations for miniKanren

Following the nanopass approach (Keep and Dybvig, 2013; Sarkar, Waddell, and
Dybvig, 2005), our compiler back-end consists of many small passes. We group
them into four major steps to discuss their effects.

C O N S TA N T F O L D I N G The first major pass implements constant folding. It
tracks statically-known equational information with a compile-time substitution
data structure. The compiler uses information gained from earlier conjuncts to
simplify subsequent ones. When unifications are statically guaranteed to succeed
trivially or fail, the compiler simplifies them to just succeed or fail respectively.
This pass also decomposes complex equations into conjunctions of simple “variable
on the left” ones.

D E A D - C O D E E L I M I N AT I O N Dead-code elimination requires several small
passes. The first one removes any code dominated in control flow by fail (usually
introduced by constant folding). The second pass finds equations that are statically
known to succeed and whose execution does not further constrain the domains of
external variables, and it replaces all such equations with succeed. The remaining
passes simplify conjunctions with trivial succeeds and remove the bindings of
unused logic variables from fresh goals.

88 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

U N I F I C AT I O N A N A LY S I S Two further passes annotate unifications with
information that allows the code generator to specialize code (Van Roy, 1994). The
first of these two employs abstract interpretation to mark unifications for which it
is safe to skip an occurs check (Søndergaard, 1986). An occurs check is generally
required to forbid cyclic terms and ensure soundness of deductions (Marriott and
Søndergaard, 1989), but it is expensive: the cost is linear in the size of the run-time
terms being unified. Unification in miniKanren always includes the occurs check,
but it is unnecessary when the compiler can statically determine that the equation
does not introduce a cycle. The analysis correspondingly uses an abstract domain
that records whether each variable is fresh, is known to refer to a limited set of
other variables, or has a wholly unknown value. The second unification analysis
pass marks the first reference to a newly introduced logic variable. This reference
can be compiled efficiently because the specializer knows the variable is fresh.

S P E C I A L I Z AT I O N Normally, miniKanren performs unification via a runtime
operation that recursively inspects the structure of two terms. Our code generator
specializes unification to any syntactically evident structure. For example, in

(== x (cons first (cons second rest)))

the term on the right-hand-side always has at least two pairs. The unification
procedure’s dispatch can thus be unfolded and simplified for this portion of the
match. The code generator also employs the annotations from unification analysis
to generate calls to a version of unification without the occurs check when possible.

10.2.2 Extensions Get Optimized Too

DSL users who add syntactic extensions to this miniKanren implementation also
benefit from the compiler pipeline, following Dybvig’s “macro writer’s bill of
rights” (Dybvig, 2004). Dybvig proposes that compilers should guarantee to per-
form certain optimizations such as constant folding and dead-code elimination,
allowing macro authors to write simple transformations that may sometimes in-
troduce unnecessary indirections or add macro-generated dead code—without
sacrificing performance. Through syntax-spec, our DSL’s architecture allows us
to offer DSL programmers these rights.

To show how extensions automatically benefit from our compiler pipeline, we
step through an example. Below is leo, an inequality relation on Peano numerals
adapted from the work of Rozplokhas and Boulytchev (2021):

(defrel/matche (leo x y)

[('Z y)]

[((cons 'S x1) (cons 'S y1)) (leo x1 y1)])

Our leo definition uses defrel/matche, which in turn uses matche. The sim-
plistic implementation of matche from Section 10.1.1 introduces inefficiencies.

10.2 O P T I M I Z I N G L I K E A D E E P E M B E D D I N G 89

Figure 10.8 shows leo program after each of three major steps, using plain source
code for readability.

(defrel (leo x y)

(fresh (ls)

(conj (== ls (cons x (cons y '())))

(disj (fresh (y^) (== (cons 'Z (cons y^ '())) ls))

(fresh (x1 y1)

(conj (== (cons (cons 'S x1) (cons (cons 'S y1) '())) ls)

(leo x1 y1)))))))

(defrel (leo x y)

(fresh (ls)

(conj (== ls (cons x (cons y '())))

(disj (fresh (y^) (conj (== x 'Z) succeed))

(fresh (x1 y1)

(conj (conj (== x (cons 'S x1))

(conj (== y (cons 'S y1)) succeed))

(leo x1 y1)))))))

(defrel (leo x y)

(fresh ()

(disj (fresh () (== x 'Z))

(fresh (x1 y1)

(conj (conj (== x (cons 'S x1)) (== y (cons 'S y1)))

(leo x1 y1))))))

Figure 10.8: The leo program after each of: expansion (top); constant folding (middle);
and dead-code elimination (bottom). Underlines indicate the parts of the
program that are changed in the next frame. In the first frame, they highlight
the unifications that are simplified by constant folding. In the second, they
show which portions of the program are removed by dead code elimination.

The macro expander desugars the Racket defrel/matche macro into a defrel
with a matche in the body. The expander further desugars matche and all the
miniKanren surface syntax forms together into our core language. These expansions
result in a program with a number of unnecessary indirections, shown in the left-
hand frame of Figure 10.8. The expansion introduces the intermediate variable
ls, a list of all the relation’s arguments. Each disjunct unifies ls with the term
compiled from the pattern. Through this indirection, the generated code naively
unifies lists of all arguments against entire patterns; this is wasteful when the terms
are statically known to share structure.

Constant folding and dead code elimination address these inefficiencies. The
middle frame of Figure 10.8 shows the result of constant folding. The pass elimi-
nates two references to ls and also simplifies the remaining equations. Dead code
elimination cleans up after the constant folding pass by removing trivial pieces.
By the end of dead code elimination, shown in the right-hand frame, the compiler
optimizes away all uses of the unnecessary variable ls. It retains (fresh () ...)

nodes in the final frame of Figure 10.8 even after dead code elimination because

90 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

the faster-minikanren run-time system establishes interleaving points for its
search at fresh. The compiler therefore keeps these nodes to achieve answer order
equivalence with the existing implementation.

Keep et al., who first introduced matche, write that one of their primary aims
is “to generate code that will perform at least as well as if the generated code had
been written by a human” (Keep et al., 2009). Our simplistic implementation of
matche from Section 10.1.1 initially seems to fall short of that aim, but macro-
expanding to the input language of an optimizing compiler solves the problem with
no extra effort on the behalf of the macro author. Our compiler removes matche’s
unnecessary indirections whether the matche comes from the source program
or through the expansion of another macro like defrel/matche. Without these
optimization guarantees, the DSL extension programmer would have to inspect the
entire macro stack to ensure that a new macro will generate performant code. An
optimizing compiler for the core language relieves the extension programmer of
this burden. In short, the benefits stack up as the layers of languages and extensions
do.

10.2.3 Optimizing at the Boundary with Racket

Compiler correctness and performance also entail preserving certain properties of
mixed miniKanren and Racket language programs. As mentioned in Section 10.1.2,
we can understand the DSL-host language combination as a Matthews-Findler
multi-language. When adding extensibility and a host-language interface, the key
is to hit a “sweet spot” of adding the desired expressive power (Felleisen, 1991)
without losing the ability to reason about the DSL program as something more
than mere host language code.

Our multi-language hits such a sweet spot. It increases the expressive power of
extensions without exposing internal implementation details that would prevent
semantics-preserving optimization. Consider programs of the following shape:

(conj

(fresh (x y)

(== x y))

(GE #| ... unknown racket code ... |#))

Our optimizer’s constant propagation and dead code elimination transform the first
conjunct into:

(fresh () succeed)

After all, no matter what Racket code is in the following goal, it cannot observe
the fact that the optimizer has removed the allocation of those logic variables.
Alternative host-interface designs could render such optimizations impossible. For
example, if the Racket code were able to access the data structure storing the
current values of all logic variables and enumerate them all, its behavior could
change when our compiler removes otherwise-dead variables.

10.2 O P T I M I Z I N G L I K E A D E E P E M B E D D I N G 91

At the same time, the explicit boundaries between the two languages enable the
optimization passes to rein in their transformations to account for the unknown
behavior of the Racket code, as discussed in Section 2.3.2.

The syntax-spec framework facilitates hitting the aforementioned expressive
power sweet spot by structuring the DSL definition as a multi-language where
the DSL and host interact only at the specified boundary. The DSL has a sep-
arate grammar only connecting to the host at specified host-interface and
racket-expr positions. Name bindings are similarly protected. DSL names like
term-variables belong to separate binding classes. They may be used in Racket
code only if a value translation is defined using #:reference-compiler (see
Section 2.3.1). These choices ensure we can have the interactions that we want and
prevent unexpected interaction. The multi-language structure could also provide
the basis for formal reasoning about the correctness of our miniKanren compiler,
along the lines of Perconti and Ahmed (2014).

10.2.4 Benchmarks and Results

To evaluate our optimizations’ effectiveness, we assembled a benchmark suite
and measured the speedup produced by each important category of compiler op-
timization. The point though is not to prove the effectiveness of our particular
optimizations, but to show that the architecture enabled by syntax-spec accom-
modates an optimizing compiler.

10.2.4.1 Benchmark Suite

We assembled a benchmark suite from examples in several papers on pure relational
programming in miniKanren.

O C C U R S C H E C K Rozplokhas and Boulytchev (2021) analyzed the asymptotic
complexity of a variety of miniKanren programs. They note that the occurs check
sometimes contributes substantially to the asymptotic cost. Because we expect that
our optimizer can remove some of these checks, we adopt two of these programs as
benchmarks. One uses the leo program introduced in Section 10.2.1 and searches
for a Peano numeral greater than 8000. The second program uses a two-place
append relation that connects a pair of lists with the result of appending the first
to the second. This test runs the relation with a pair of two ground lists of 10,000
elements each.

A R I T H M E T I C The second set of benchmark programs exercise the miniKan-
ren relational arithmetic suite introduced by Kiselyov et al. (2008). The first of
these solves a difficult logarithm. The second program solves the four-fours

puzzle (Ball, 1914) for 256, and the third searches for a number with a factorial of
720.

92 T H E M I N I K A N R E N O P T I M I Z I N G C O M P I L E R

Table 10.1: Our compiler’s performance results on a selection of miniKanren tests.
The faster-mK benchmark column reports time in milliseconds; subsequent
columns report speedup ratios over that column. Larger numbers report better
speedups. Tests were run on a M1 Max Macbook Pro with 64GB RAM.

Benchmark faster-mK no opts prop only dead code occurs check overall

Occurs check
leo 8000 209 1 1 1 52.25 69.67

appendo w/2 lists 327 0.99 1 1.01 81.75 109

Arithmetic

logo 437 0.99 1 0.98 1.08 1.44

four fours of 256 77 0.95 0.97 0.94 1.01 1.26

fact x = 720 122 1.04 1.03 1.01 1.18 1.56

Interpreters

one quine 962 0.99 0.96 0.97 1.01 1.01

9,900 (I love you)s 1378 0.96 0.95 0.98 1.01 1.04

append synthesis 252 1 1 0.98 1.33 1.81

dynamic and lexical 18 1 1.06 1 1.2 1.5

four thrines 683 0.98 1 1 1.03 1.06

countdown from 2 64 0.97 1 1 6.4 7.11

I N T E R P R E T E R S The third and largest suite of programs use relational inter-
preters to synthesize programs with specified behaviors. The first example replicates
the inaugural application of relational interpreters presented by Byrd, Holk, and
Friedman (2012): generating a Scheme quine. The next several are by Byrd et al.
(2017). They include deriving 9900 expressions that evaluate to (I love you),
example-based synthesis of part of the standard append function, and synthesizing
programs that evaluate differently under different semantics. One more program by
Byrd et al. (2017) computes a thrine, a 3-cycle of different programs that evaluate
to one another. The last program in this suite uses a relational interpreter to evaluate
a large known program.

10.2.4.2 Results

Table 10.1 shows the performance improvements on our benchmark suite. To bring
across what benefits each optimization realizes, we show the time to compute
each program with the baseline faster-miniKanren implementation, and the
speedup from our compiler with different configurations of optimization passes
enabled. The header of each column indicates the additional optimization added
in that configuration; each configuration includes the optimizations enabled in the

10.2 O P T I M I Z I N G L I K E A D E E P E M B E D D I N G 93

columns to its left. The final “overall” column thus includes the speedup provided
by the final optimization pass, unification specialization.

The occur-check removal is the most helpful optimization. In addition to the
examples where we expected to see improvement, we found it was also important
for the relational interpreter benchmark with a large ground program (“countdown
from 2 in 𝜆-calc”). Unification specialization is usually helpful or harmless, but
occasionally produces slowdowns by increasing the size of generated code. Con-
stant propagation and dead-code elimination do not confer much benefit. Their
performance is artificially limited by our desire to maintain answer order equiv-
alence with faster-miniKanren, which prevents us from removing dead code
that impacts search order. We validate the correctness of our compiler against a
larger test suite, and on these tests we do achieve answer-order equivalence with
faster-miniKanren.

11
PA R S I N G E X P R E S S I O N G R A M M A R S

This chapter presents a second substantial DSL implementation in syntax-spec,
of Parsing Expression Grammars (Ford, 2004). Parsing is a natural application
domain for multi-language macros. Many programs need to embed a parser for
a custom input format, and parsers typically need to embed host-language code
that performs semantic actions. With multi-language macros, a parsing DSL can be
fluidly integrated with the host language while also benefitting from static semantic
checks and optimizations.

My PEG DSL implementation also illustrates particularly powerful forms of
macro extensibility. The syntax-spec system lifts the Racket macro system’s
notions of local expansion and interposition points to apply to DSL expansion
as well. Extensions to the PEG DSL take advantage of these features to layer a
higher-level abstraction for simple parsing tasks atop the core DSL and customize
the DSL to integrate it with a separately-developed lexer. Parts of this chapter are
adapted from collaborative work with Alexis King (Ballantyne, King, and Felleisen,
2020).

11.1 P E G S A S A M U LT I - L A N G UAG E D S L

Ford (2004) introduced PEGs as an alternative to context free grammars that avoids
ambiguity by relying on prioritized choice between alternatives. This section shows
how my implementation of PEGs acts as a multi-language DSL integrated with
Racket. It also discusses the static semantics and optimizations offered by its DSL
compiler. Finally, it extends the PEG DSL via macros.

11.1.1 PEG Syntax as an Extension to Racket

Figure 11.1 specifies the grammar of the PEG DSL and its interface to Racket.
Figure 11.2 demonstrates its use with a fragment of a PEG parser for Python.1The
DSL can parse text from a string or tokens from a list. Here the example parses a
list of tokens represented as Racket string and number values. The first line of the
example imports the DSL library, making its syntax and runtime support available
within the module.

Parsing requires recognizing elements from a token stream and constructing
a syntax tree. In my PEG DSL the basic expressions recognize patterns of to-

1 This example is motivated by projects that implement Python atop Racket in order to take advantage
of Racket’s pedagogical tools (Ramos and Leitão, 2014), explore cross-language interoperability
(Meunier and Silva, 2003), and investigate Python’s semantics (Politz et al., 2013).

95

96 PA R S I N G E X P R E S S I O N G R A M M A R S

<racket-def> := ... | (define-peg [<nonterminal-id> <peg>] ...)

<racket-exp> := ... | (parse <nonterminal-id> <racket-exp>)

<terminal-literal> := <string> | (token <racket-exp>) | ...

<nonterminal-id> := <identifier>

<peg> := <nonterminal-id> nonterminal reference

| 𝜖 empty match

| <terminal-literal> terminal

| (seq <peg> ...+) sequence

| (alt <peg> ...+) ordered choice

| (* <peg>) zero or more

| (! <peg>) negative lookahead

| (: <racket-id> <peg>) parse variable binding

| (=> <peg> <racket-exp>) semantic action

Figure 11.1: PEG DSL syntax

kens such as sequences (seq), alternatives (alt), and repetition (*). Semantic
actions (=>) use Racket expressions in order to construct abstract syntax as Racket
data. As illustrated in Figure 11.2, PEG non-terminals such as arith-expr are
defined in Racket modules alongside Racket structures and functions such as
left-associate-binops. Thus the syntax of Racket and the PEG DSL integrate
in two ways: PEG non-terminal definitions live in Racket modules, and Racket
expressions are embedded in PEG’s semantic actions.

Name bindings are key to the interaction between the two languages. PEG non-
terminal bindings may be used with require and provide of Racket’s modules
to import and export PEG non-terminals alongside other Racket bindings such as
those for functions. Parse variables mediate between the parts of semantic actions:
PEG binding expressions (:) in the parser part bind parse variables that can be
referred to in the Racket action expression. These parse variables contain the result
of the semantic action for the corresponding PEG subexpression, or if the binding
occurs nested within repetition expressions (*), the variable contains lists of results
nested to the same depth. For example, the parse variable e* in Figure 11.2 contains
a list of semantic-action results from parsing all but the first subexpression of the
arithmetic expression, a term.

Although the lexical syntax of the PEG DSL uses S-expressions, the DSL is not
embedded in Racket’s syntactic forms. Instead it adds the new syntactic category
of PEG expressions, and extends Racket’s definition and expression categories
via the define-peg and parse interface macros, respectively. The two languages
cannot be freely intermixed—writing a Racket expression where a PEG expression
is expected leads to a compile-time error message describing the mistake. Similarly,
PEG non-terminal bindings belong to a separate category from Racket variable
bindings, and referring to a Racket variable in a PEG expression or vice versa leads
to a compile-time error.

11.1 P E G S A S A M U LT I - L A N G UAG E D S L 97

#lang racket

(require peg)

(struct binop-ast [lhs op rhs])

(define-peg

[term #| elided #|]

[arith-expr (=> (seq (: e1 term) (* (seq (: op* (alt "+" "-"))

(: e* term))))

(left-associate-binops e1 op* e*))])

(define (left-associate-binops e1 op* e*)

(foldl (lambda (op e base) (binop-ast base op e))

e1 op* e*))

(parse arith-expr '(1 "+" 2 "-" 3))

;; evaluates to:

;; (binop-ast (binop-ast 1 "+" 2) "-" 3)

Figure 11.2: Fragment of a PEG parser for Python arithmetic expressions

11.1.2 PEG Static Semantics

The PEG DSL has a custom static semantics. Its DSL compiler rejects left-recursive
non-terminals, because parsing with left-recursive PEGs may fail to terminate.
Consider this alternate expression of the arith-expr non-terminal:

(define-peg

[arith-expr-leftrec

(alt term

(=> (seq (: e1 arith-expr-leftrec)

(: op (alt "+" "-"))

(: e2 term))

(binop-ast e1 op e2)))])

Parsing with this definition correctly accepts arithmetic expressions because the
term alternative is attempted before the left recursion, but loops forever if the
term alternative never matches. Without the static check it would be easy to
write buggy code. Non-terminal definitions may be mutually recursive within
a single define-peg, but not between separate definition groups. Checking for
left recursion involves a fixed point computation across the mutually-recursive
definitions. Because a parser may be composed of non-terminals defined in different
modules, the left-recursion check must communicate information between separate
module compilations.

Static checks are most useful to programmers when their IDE provides feedback
as they type. Racket’s macro system integrates tightly with its IDE, DrRacket,
and this extends to multi-language DSLs. Here DrRacket uses the DSL’s static

98 PA R S I N G E X P R E S S I O N G R A M M A R S

semantics to highlight the specific non-terminal references which create the left
recursion, as soon as the definitions are complete.

11.1.3 PEG Compilation and Optimization

The PEG DSL’s compiler performs optimizations. For example, scannerless parsers
often include non-terminals that consist of a choice among fixed character se-
quences, as in this definition of Python comparison operators:

(define-peg

[comp-op (alt "==" ">=" "<=" "<" ">" "!=" "in" "not" "is")])

Naive execution must check every alternative and backtrack as needed. A proper
compiler for the PEG DSL can use binary search and a single backtrack point. Note
that this optimization applies for my DSL only when parsing text, not tokens. As
illustrated in Section 11.3.2, the DSL is designed to integrate with arbitrary token
representations. These may lack the operations needed to support the binary search
optimization. A variety of other optimizations have been proposed in previous work
on PEGs (Grimm, 2004), and my approach can accommodate many of them. These
optimizations rely on analyzing and transforming DSL syntax, so it is important
that syntax-spec allows DSL compilers to assume a fixed core language.

11.1.4 PEG Macros

Because it is built with syntax-spec, the PEG DSL is naturally macro-extensible.
Internally, the implementation uses macros to realize features that are abbreviations
over terms of the core language. For example, the DSL includes a (? e) expression
indicating an optional element of a sequence, and it expands to (alt e 𝜖).

PEG DSL users can also define macros to create syntactic sugar for commonly-
seen patterns in their parser definitions. For example, the Python grammar includes
many non-terminals such as arith-expr for binary and prefix operators, structured
to encode operator precedence. Thiemann and Neubauer (2008) propose using
grammar macros to simplify such definitions. The binops macro captures the
pattern for parsing binary operators:

(define-dsl-syntax binops peg-macro

(syntax-parser stx

[(_ op-e subexpr-e)

#'(=> (seq (: e1 subexpr-e) (* (seq (: op* op-e)

(: e* subexpr-e))))

(left-associate-binops e1 op* e*))]))

Using the peg-macro extension class in define-dsl-syntax indicates that the
macro is intended to extend the PEG language. Using the macro in another context,
such as a Racket expression position, results in a syntax error. Otherwise the

11.2 I M P L E M E N T I N G T H E P E G D S L W I T H syntax-spec 99

macro is defined in just the same way as a Racket macro: as compile-time Racket
code using the syntax-parse DSL. PEG expressions generated by PEG macros
can contain Racket subexpressions, and macro hygiene works for cross-language
bindings such as e1 and e*.

Together with a similar macro for prefix operators, the binops macro allows for
concise specification of precedence hierarchies:

(define-peg

[or-test

(binops "or"

(binops "and"

(prefix "not"

(binops comp-op

expr))))])

The PEG DSL also provides a local-expand-peg procedure much like Racket’s
local-expand procedure, which allows PEG macros to reflectively expand and
then operate on PEG syntax. Sophisticated extensions to the PEG DSL appear in
Section 11.3.

11.2 I M P L E M E N T I N G T H E P E G D S L W I T H syntax-spec

Figure 11.3 shows the essential pieces of the syntax-spec declaration for the PEG
DSL. In Section 11.3.2 I elaborate on the declaration slightly to admit additional
forms of macro extensions.

The declaration includes binding rules for parse variable and PEG nontermi-
nal bindings. To allow the Racket code in semantic actions to refer to the parse
variables but not mutate them, the declaration of the parse-var binding class
uses immutable-reference-compiler. This reference compiler succeeds for
references but raises a syntax error when the name is used in a set!. Unlike parse
variables, PEG nonterminal names may not be directly referenced from Racket and
are not declared with a reference compiler. This restriction allows the compilation
of the DSL to include contract checks at only the parse entry point and not in the
code generated for each nonterminal.

11.2.1 Nesting Binding for Parse Variables

The PEG DSL has an interesting binding structure: parse variables are visible only
after their binding in sequences, and splice out of inner sequences and repetitions.
For example, consider a PEG of the following shape, where <P1> and <P2> are
some PEG expressions and <E> is some Racket expression:

(=> (seq (* (seq (: v1 <P1>) sp)) (: v2 <P2>))

<E>)

100 PA R S I N G E X P R E S S I O N G R A M M A R S

(syntax-spec

(binding-class parse-var

#:reference-compiler immutable-reference-compiler)

(binding-class peg-nt)

(extension-class peg-macro)

(nonterminal simple-peg #:allow-extension peg-macro

𝜖 (token e:racket-expr) (text t:text-expr)

n:peg-nt (! p:peg) (alt p:peg ...+)

(=> bp:binding-peg e:racket-expr) #:binding (nest bp e))

(nonterminal text-expr

c:char s:string e:racket-expr)

(nonterminal/nesting binding-peg (nested)

#:allow-extension peg-macro

(: v:parse-var bp:binding-peg) #:binding (scope (bind v) nested)

(seq bp:binding-peg ...+) #:binding (nest bp ... nested)

(* bp:binding-peg) #:binding (nest bp nested)

p:simple-peg)

(nonterminal peg

bp:binding-peg #:binding (nest bp []))

(host-interface/definitions

(define-peg [name:peg-nt p:peg] ...) #:binding [(export name) ...]

(leftrec-check! (attribute name) (attribute p))

#'(begin (define name (lambda (in) (compile-peg p in))) ...))

(host-interface/expression

(parse name:peg-nt in-e:racket-expr)

#'(compile-parse name in-e)))

Figure 11.3: The declaration of the PEG core language in syntax-spec.

11.2 I M P L E M E N T I N G T H E P E G D S L W I T H syntax-spec 101

The parse variables v1 and v2 are both visible in the semantic action <E>. The
value of v1 contains a list of parsed values, one for each repetition. The parse
variable v1 is also in scope for any semantic actions nested in <P2>. On the other
hand, v2 is not in scope for nested semantic actions in <P1>, which run before the
value for v2 is available.

This binding structure is achieved using syntax-spec’s support for nesting bind-
ing structures. In syntax-spec, nonterminals declared via nonterminal/nesting
have nesting binding rules. A nesting binding rule represents a fragment of scoping
structure that has a hole. The hole is indicated with the nested keyword. When a
nonterminal with nesting binding rules is referenced from another binding rule, the
hole must be filled with another fragment of scoping structure. The nest binding
rule syntax describes the hole filling, with the last subform given to nest filling the
hole in the binding structure of the preceding subform. A nest rule with an ellipsis
like (nest pv ... bs) indicates multiple hole fillings. The hole in the binding
structure of each pv𝑖 is filled with the binding structure of pv𝑖+1, with the binding
structure described by bs filling the most nested hole.

In Figure 11.3, the (:), (seq) and (*) forms have nesting binding rules: each
of these rules has a nested hole to fill. This nesting is what allows parse variable
bindings to be visible later in a sequence and splice outside containing seq and
* forms. The scoping structures for subsequent parts of the sequence fill in the
nested hole in earlier parts. Because nesting binding rules have a different shape
than normal binding rules—they have a hole that must be filled—forms with
nesting binding must appear in separate nonterminals. As such, the declaration
in Figure 11.3 has a nesting nonterminal binding-peg for PEG forms that bind
parse variables in scope of their nested hole, and a simple-peg nonterminal for
PEG forms that do not allow bindings to escape in this way. The peg nonterminal
wraps a binding-peg, filling its hole with an empty scoping structure to allow it
to be used in non-nesting contexts.

11.2.2 The Left-Recursion Check

The implementation of the left-recursion check exercises two interesting aspects
of syntax-spec: persistent symbol tables (Section 8.4), and an alternative host-
interface declaration form, host-interface/definitions. These features are
necessary in order to realize the check across module boundaries and for mutually-
recursive PEGs.

Recall from Section 11.1.2 that a PEG nonterminal is left-recursive if a parse
beginning with the nonterminal may re-enter the nonterminal without consuming
any input. When this happens, parsing can follow this loop forever and fail to
terminate. The formulation of the left recursion check relies on the additional
concept of nullability. A nullable PEG expression is one that may succeed without
consuming any input. The simplest such PEG is the primitive 𝜖 form, which
consumes no input and succeeds. A PEG expression which parses a potentially

102 PA R S I N G E X P R E S S I O N G R A M M A R S

(define expanded-defs (local-symbol-table))

(define entered (local-symbol-table))

(define-persistent-symbol-table def-nullable?)

;; (ListOf Identifier), (ListOf PEGSyntax) -> Void

;; THROWS a syntax error when left recursion is detected.

;; EFFECT records nullability in the persistent def-nullable? table.

(define (leftrec-check! names pegs)

(for ([name names] [rhs pegs])

(symbol-table-set! expanded-defs name rhs))

(for ([name names])

(nullable-nonterminal? name)))

;; PEGNonterminalID -> Boolean

(define (nullable-nonterminal? id)

(case (or (symbol-table-ref def-nullable? id #f)

(symbol-table-ref entered id #f)

'unvisited)

[(nullable) #t]

[(not-nullable) #f]

[(entered)

(raise-syntax-error #f "left recursion through nonterminal" id)]

[(unvisited)

(symbol-table-set! entered id 'entered)

(define rhs (symbol-table-ref expanded-defs id))

(define res (nullable? rhs))

(symbol-table-set! def-nullable? id

(if res 'nullable 'not-nullable))

res]))

;; PEGSyntax -> Boolean

(define (nullable? stx) #| elided |#)

Figure 11.4: The implementation of the left-recursion check using symbol tables.

empty sequence of any number of digits is also nullable because it can succeed
while parsing zero digits. Left recursion depends on nullability in the case of
sequences. Consider checking for left recursion in the following definition:

(define-peg

[nt1 #| elided |#]

[nt2 (seq nt1 nt2)])

The PEG nonterminal nt2 is left recursive if and only if the PEG nonterminal nt1
is nullable.

Figure 11.4 presents the compile-time code that implements the left-recursion
check, which is invoked in the definition of define-peg from Figure 11.3. The
leftrec-check! entry point checks for left recursion in the mutually-recursive

11.2 I M P L E M E N T I N G T H E P E G D S L W I T H syntax-spec 103

group of PEG nonterminals defined by a single define-peg form. In the case
where these definitions refer to other PEG nonterminals outside of the mutually
recursive group, the check relies on nullability information already being recorded
in the global def-nullable? table. As the check is performed, it also records
such nullability information for use when checking later definitions. The check
uses two other tables that do not need to persist across separate compilations. The
expanded-defs table maps PEG nonterminal names to PEG expression syntax to
allow the check to continue when it reaches a nonterminal reference. The entered
table records which nonterminals have already been traversed, in order to detect
left-recursion when traversing a cycle.

The left recursion check leverages two important features of syntax-spec’s
persistent symbol tables with respect to the def-nullable? table. First, entries in
the table persist across separate compilation boundaries. Thus, when a nonterminal
is defined in one module and referenced in another, the left-recursion check for
the referencing nonterminal can access the nullability information stored in the
previous module expansion. Second, extending the table is accomplished via a
side effect. This means that the persistent entries can be easily created within the
same computation that traverses the mutually-recursive definitions. This stands
in contrast to the more complex pattern of programming required with Racket’s
lower-level tools; see Section 8.4.

Because the left-recursion check needs to traverse the graph implied by the
references in a mutually-recursive group, it is possible to perform this check only
once the entire group has been fully macro-expanded. This raises a difficulty with
respect to syntax-spec’s integration with the passes of expansion in Racket’s
definition contexts. Given that Racket’s definition contexts feature only two passes
of expansion, it is not possible for syntax-spec to both:

1. Allow mutual-recursion between separate host-interface forms.

2. Allow the DSL compiler to simultaneously examine all the fully-expanded
definition right-hand sides.

Supporting both features would require three passes of expansion overall: one
to bind the left-hand-sides, one to expand the right-hand-sides, and one to run
the DSL compiler. Instead, syntax-spec provides two different host-interface
declaration forms to allow programmers to make the trade-off. The syntax-spec
for miniKanren in Figure 2.2 uses the host-interface/definition form to
allow mutual recursion between separate definitions. This comes with the trade-off
that the miniKanren DSL compiler must process each defrel body in isolation.
The resulting expansion process is described in Section 8.3. The PEG declaration in
Figure 11.3 instead uses the host-interface/definitions form. With this kind
of host-interface, the two passes of syntax-spec expansion both occur within
the first pass of Racket definition-context expansion. This allows the PEG DSL
compiler to simultaneously access the fully-expanded right-hand-sides of all the

104 PA R S I N G E X P R E S S I O N G R A M M A R S

definitions in the group to perform the left-recursion check. However, references to
PEG nonterminals defined by a separate define-peg further down in the module
result in an error.

11.2.3 Limitations of syntax-spec

Development of the PEG DSL exposed two limitations of syntax-spec. First,
syntax-spec’s binding rules cannot express one portion of my intended design
for PEG. It would be easier to construct semantic actions for alternatives if the
pattern variables from both alternative branches in an (alt p ...) PEG were
bound in the semantic action. The values for variables coming from the branch
of the alternative that was not evaluated in a given parse would be #f. With this
scoping rule, the scope for a semantic action would have multiple parents, one
for each alternative. Such DAG-shaped rather than tree-shaped scoping structures
cannot yet be expressed with my binding-rule language.

Second, the PEG DSL’s compiler would benefit from an additional name analysis
that syntax-spec does not yet provide. The compilation of the zero-or-more PEG
expression (* p) requires computing a set of parse-variable names that should
be bound to lists of results for the repeated match. While syntax-spec provides
services for computing the free- and bound- identifiers of a term, the set of names
needed here is difficult to define. The set should include the identifiers that are
bound as pattern variables within the * form, but not those whose scope is limited
by further-nested semantic actions (=>). This set can also be described as those
names that are bound in the term and placed in scope for the syntax that fills the
nested hole in the binding structure of the term. The syntax-spec implementation
does not yet provide a service for computing this set of names, so the PEG compiler
computes it manually.

11.3 T H E P O W E R T H AT C O M E S W I T H E X T E N S I B L E D S L S

Macros enable powerful extensions to DSLs that go beyond syntactic sugar. They
enable DSL programmers to create towers of DSLs to allow each program compo-
nent to be written at the right level of abstraction. They also allow programmers
to customize the syntax of a DSL to smoothly integrate with other components of
their software system (Felleisen et al., 2018). This section presents extensions to
the PEG DSL that exemplify these ideas.

11.3.1 Layering DSLs

When designing a DSL, language authors must make a choice along a spectrum of
specialization. A specialized DSL allows the most direct expression of programs
within its narrow purview. A general DSL demands more programming effort in

11.3 T H E P O W E R T H AT C O M E S W I T H E X T E N S I B L E D S L S 105

exchange for flexibility. Luckily there is a way to escape the trade-off through
towers of multiple DSLs, each at a different degree of specialization. The most
specialized languages are at the top of the tower, and they are implemented by
translation to the layers below. This arrangement allows specialized DSLs to take
advantage of the shared languages at the lower layers (Andersen, Chang, and
Felleisen, 2017; Ward, 1994).

Extensible DSLs enable another way of using towers of DSLs: programs can
combine components written in DSLs belonging to different layers of the tower
to achieve a mixture of concision and custom behavior. Higher-level DSLs are
implemented as macro extensions of the base DSLs, just as the base DSLs are
implemented as extensions to Racket, as illustrated in Section 11.1. The result is
that the syntax and static semantics of DSLs at different layers of the tower are
tightly integrated and programs may mix languages easily.

Parsing tools reflect a spectrum of specialization regarding abstract syntax tree
construction. Some tools automatically construct syntax trees based on the structure
of the grammar, whereas others leave the parser programmer to build syntax trees
using semantic actions. My PEG DSL uses the second approach so that parsers can
construct syntax trees corresponding to the structure of the grammar even when
left factoring requires a reorganization. For example, the arith-expr semantic
action constructs a left-associated syntax tree.

In other cases, however, the PEG closely matches the structure of the parsed
language. Consider the task of parsing Python’s raise form. With the PEG DSL
design, we separately define a structure to represent the abstract syntax and a PEG
to parse the concrete syntax:

;; a structure with a super type, `ast`
(struct raise-ast ast [exn from])

(define-peg

[raise (=> (:src-span srcloc

(seq "raise" (? (seq (: exn test)

(? (seq "from" (: from test)))))))

(raise-ast srcloc exn from))])

This implementation also captures a source location and records it in the abstract
syntax, relying on an additional :src-span PEG form omitted from in Figure 11.3.
The :src-span PEG form captures a source location description spanning the first
and last tokens parsed by the interior PEG. Notice that for the raise parser and
structure definition, the parse variable bindings in the PEG correspond exactly to
the fields of the structure used for the abstract syntax tree: exn and from. Other
statements in the Python grammar such as return and assert exhibit a similar
correspondence. This pattern suggests an opportunity to abstract.

Parsing these forms is more convenient with a DSL that automatically constructs
syntax trees based on the parse variable bindings in the grammar. Such a specialized
DSL is easily realized via a peg-macro atop the core PEG DSL. With the extension,
the raise parser becomes:

106 PA R S I N G E X P R E S S I O N G R A M M A R S

(define-peg-ast raise raise-ast

(seq "raise" (? (seq (: exn test) (? (seq "from" (: from test)))))))

This defines both the raise-ast structure with exn and from fields, and the
raise PEG non-terminal. Source locations propagate into the AST automatically.
A complete Python parser can use a mixture of define-peg-ast for syntactically
simple non-terminals and define-peg for non-terminals that require specialized
processing.

Implementing the Extension

Figure 11.5 shows the definition of the define-peg-ast macro. It simultaneously
defines a structure type to represent abstract syntax (ast-name) and a PEG parser
non-terminal for parsing the concrete syntax (peg-name). The field names for the
structure type are inferred from parse variable bindings in the PEG expression,
such as exn and from in the example above.

(struct ast [srcloc])

(define-syntax define-peg-ast

(lambda (stx)

(syntax-parse stx

[(_ peg-name:id ast-name:id p:peg)

(define/syntax-parse

(var ...)

(find-parse-var-bindings (local-expand-peg #'p)))

#'(begin

(struct ast-name ast [var ...])

(define-peg

[peg-name (=> (:src-span srcloc p)

(ast-name srcloc var ...))]))])))

Figure 11.5: Implementation of define-peg-ast

To implement this behavior, the macro transformer must discover the variable
bindings within the given PEG expression p. It cannot analyze the syntax directly
because p may contain macro uses, so it invokes local-expend-peg to obtain
expanded syntax that uses only the core language. It can then use a procedure
find-parse-var-bindings (not shown) to walk the expanded core AST and
build a list of binding variable names. In the template, the names are used as the
field names of a struct definition and as parse variable references in the semantic
action.

The local-expand-peg procedure is implemented by the core PEG DSL. Its
implementation is trivial: it simply dispatches the task to syntax-spec:

(define (local-expand-peg stx)

((nonterminal-expander peg) stx))

11.3 T H E P O W E R T H AT C O M E S W I T H E X T E N S I B L E D S L S 107

The nonterminal-expander form accesses the macro expander for a given
syntax-spec nonterminal.

11.3.2 Integrating with Other Components

Any given DSL addresses only one domain of the many involved in creating
a large, complex software system. It is thus essential that each DSL provide
programmers with tools to integrate it with other program components. Using
macros, programmers can customize the syntaxes of DSLs to integrate with other
parts of their program.

Consider the integration of the PEG-based Python parser with a Python lexer
written in plain Racket. To allow integration with any lexer, the PEG DSL does
not fix a specific token representation. Instead, programmers provide a Racket
predicate which the parser uses to recognize tokens. For example, my Python lexer
represents keyword tokens as structures:

(struct keyword-token [name])

To integrate the PEG DSL with this token representation, we first write a function
that generates predicates matching keyword-token structs whose name field is
equal to a given value:

;; (-> string? (-> any/c boolean?))

(define (keyword expected-name)

(lambda (t)

(and (keyword-token? t)

(equal? (keyword-token-name t) expected-name))))

The PEG DSL provides a (token <racket-exp>) syntax for parsing tokens. The
Racket expression argument provides the predicate the parser uses to recognize
tokens. Thus the following PEG expression matches Python return statements:

(seq (token (keyword "return")) (? (: exp testlist-star-expr)))

This integration via Racket procedures is effective, but also syntactically verbose.
Macros permit customization of the syntax of the PEG DSL to improve integra-

tion with the Python lexer in two ways. First, we can repurpose string literal syntax
to match keywords concisely:

(seq "return" (? (: exp testlist-star-expr)))

Second, we can raise compile-time syntax errors for misspelled keywords by
checking against a list of Python keyword names.

Implementing the Extension

Figure 11.6 shows the implementation of a PEG macro that adds these features to
the DSL. The macro takes advantage of an interposition point (Culpepper et al.,

108 PA R S I N G E X P R E S S I O N G R A M M A R S

2019) to change the meaning of string literal syntax. These special extensibility
points allow macros to change the meaning of elements of DSL syntax that lack
explicit names, such as function application or literal syntax for datums such as
strings and numbers. The PEG DSL offers the #%peg-datum interposition point to
allow users to change how literal datums are interpreted.

(require (for-syntax python-lexer))

(define-dsl-syntax #%peg-datum peg-macro

(syntax-parser stx

[(_ s:string)

(unless (member (syntax-e #'s) python-keyword-list)

(raise-syntax-error #f "Invalid keyword token" #'s))

#'(token (keyword 's))]))

Figure 11.6: Changing the meaning of string literals in PEG expressions to match keyword
tokens

Providing a custom behavior for an interposition point is accomplished by
defining a macro using the interposition point’s name. The new implementation
of the behavior is used wherever the macro is in scope. The new #%peg-datum

first checks that the string corresponds to an actual Python keyword name. Then
it expands to a use of the token PEG expression syntax with a token-matching
function constructed by the keyword function. In order to identify valid Python
keywords, the macro uses a python-keyword-list provided by the lexer.

(syntax-spec

#| elided declarations from the original spec |#

(nonterminal simple-peg #:allow-extension peg-macro

#| elided cases from the original nonterminal |#

(~> (~or lit:string lit:char lit:number lit:regexp)

#:with #%peg-datum (datum->syntax #'lit '#%peg-datum)

#'(#%peg-datum lit))))

(define-dsl-syntax #%peg-datum peg-macro

(syntax-parser

[(_ (~or* lit:char lit:string)) #'(text lit)])))

Figure 11.7: The implementation of the #%peg-datum interposition point in the PEG DSL’s
syntax-spec declaration, modifying Figure 11.3.

This extension is possible because the design of the core PEG DSL anticipates
the need for this form of extension. Figure 11.7 shows how the interposition point is
implemented via a modification of the syntax-spec declaration from Figure 11.3.
The implementation consists of a rewrite production in the simple-peg nonter-

11.3 T H E P O W E R T H AT C O M E S W I T H E X T E N S I B L E D S L S 109

minal declaration as well as a #%peg-datum macro defining the default behavior
for the interposition point. A rewrite production, signaled by a (~>), augments
the parsing process for the nonterminal with a syntax rewriting. The rewriting can
use all the features of syntax-parse to match and reconstruct syntax. Here, the
rewriting matches on string, character, number, and regular expression literals and
wraps them with a call to a #%peg-datum macro.

To make #%peg-datum act as an interposition point, the rewriting bends macro
hygiene with datum->syntax. Normally, hygiene would fix the reference to refer
to the default definition of #%peg-datum present at the definition-site of the rewrit-
ing. The use of datum->syntax copies the lexical context from the syntax of the
character, string, number, or regexp literal in order to refer to whatever definition
of #%peg-datum is in scope in the lexical context where the literal is written. This
may be the default #%peg-datum if the user program imports this definition from
the core PEG implementation. Alternately it may be a local, overriding definition
such as that provided in Figure 11.6 to integrate with the Python lexer. The de-
fault #%peg-datum implementation interprets character and string literals as string
fragments to match textually with the text peg form.

12
A P L E T H O R A O F D S L S

While miniKanren and PEG parsers represent my most substantial DSL implemen-
tations in syntax-spec, I have also created a collection of smaller DSL imple-
mentations. These include re-implementations of (subsets of) well-known DSLs
such as racket/class and racket/cmdline from Racket’s standard library, as
well as DSLs from the broader literature. I also used syntax-spec in my work
on multi-stage miniKanren. The syntax-spec design makes expressivity trade-
offs in order to keep declarations simple and enable hygienic macro extensibility
(discussed in Section 3.2 and Chapter 9). The array of implementations presented
in this chapter together with those by other authors in Chapter 13 help establish
that syntax-spec is expressive enough to conveniently implement many valuable
DSLs. At the same time, the DSLs also illustrate some limitations imposed by the
binding specification language.

12.1 S TAT E M AC H I N E S

Taking inspiration from statecharts (Harel, 1987), the state machine DSL enables
programmers to express state-machine patterns directly. Here is a simple program
in the DSL, modeling a subway turnstile:

(define (turnstile fare)

(machine #:initial locked

(data accumulated-valuee 0)

(state unlockede
(on (person-passes-through)

(emit 'lock) (goto locked)))

(state lockede
(on (coin values) #:when (>= (+ value accumulated-fare) fare)

(set accumulated-value 0) (emit 'unlock) (goto unlocked))

(on (coin values) #:when (< (+ value accumulated-fare) fare)

(set accumulated-value (+ value accumulated-value))

(goto locked)))))

The program consists of states, event-triggered transitions, and computations on
data performed via Racket subexpressions.

B I N D I N G S T RU C T U R E Data and state names use exporting binding structure
(underlined with a subscript e) within the machine body. Transition arguments
have a simple binding structure (underlined with subscript s). Racket expressions
in guards, setters, and emit expressions can refer to data variables and event
arguments.

111

112 A P L E T H O R A O F D S L S

U S E O F syntax-spec S E RV I C E S The DSL protects state names from use
by Racket expressions via a binding class, ensuring that all state transitions can be
easily found by static analysis. This restriction is useful because the DSL compiler
performs a static check to ensure that all states are reachable from the initial state
(ignoring #:when clause restrictions). It uses symbol tables to connect the definition
of state names to their references in gotos.

12.2 C L A S S E S

The class DSL reimplements the essential subset of Racket’s class macros (Flatt,
Findler, and Felleisen, 2006), which add object-oriented capabilities to the lan-
guage’s functional core.1 The following example is a tiny excerpt from a Racket
GUI library:

(define canvas%

(class object% (super-new)

(public edit-sequence)

(define/match (edit-sequencee . exprs)

['() (send this end-edit-sequence)]

[(cons first-edit-step other-steps)

(send this step-edit-sequence first-edit-step)

(send this edit-sequence other-steps)])))

Class features are expressed as Racket forms that are reinterpreted in the class

context. In particular, function definitions are reinterpreted as method defini-
tions. The class language is thus extensible with standard Racket macros such
as define/match, a pattern-matching function definition facility; its expansion
results in a reinterpreted function definition.

The class DSL represents precisely the form of extension that Racket’s “macros
that work together” features (Flatt et al., 2012) are designed for. That is, the DSL
extends the syntax of Racket definitions and expressions within the class context,
rather than creating an entirely new sub-language. I found that syntax-spec also
works for this kind of extension and results in a concise implementation thanks to
its declarative nature.

B I N D I N G S T RU C T U R E The class DSL uses exporting binding structure for
method and field names (no fields shown) and simple binding for method argu-
ments. Macro definitions are allowed in all Racket definition contexts, including in
the body of classes. The declaration of the class DSL uses the export-syntaxes
syntax-spec binding rule form to implement bindings of macro definitions (doc-
umented in Appendix A.2.1.5).

U S E O F syntax-spec S E RV I C E S Via syntax-spec’s macro extensibil-
ity features, the class DSL is able to re-use many extensions to Racket’s defi-

1 Thanks to Michael Delmonaco for his collaboration in this re-implementation.

12.3 C O M M A N D - L I N E A R G U M E N T PA R S I N G 113

nition syntax, such as define/match. The definition of the class DSL uses the
racket-macro extension class, built-in to syntax-spec, to indicate that macros
intended for Racket contexts are usable in the class context as well.

12.3 C O M M A N D - L I N E A R G U M E N T PA R S I N G

The cmdline DSL (Ballantyne, King, and Felleisen, 2020) provides a concise
syntax for parsing command-line arguments to programs and scripts. It is inspired
by the racket/cmdline DSL in the Racket standard library (Flatt and PLT, 2010),
For example, here is the parser for a compiler executable that supports optimization
and output flags:

(define/command-line-options

#:options

[optimize-levele
(choice/o #:default 0

(numbered-flags/f "--o" [0 3] "optimization level"))]

[outpute (required/o "-o" outfiles "the output filename" outfile)]

#:arguments [file-to-compilee existing-file/p])

The definition above parses these flags and defines module-level names with the
provided values. The DSL’s operation as a definition form deviates from the original
racket/cmdline, which requires imperative programming to capture the values
of arguments. In addition to the argument parsing behavior, the specification is also
used to automatically generate a usage message that displays when the --help

flag is supplied.

B I N D I N G S T RU C T U R E The command-line option values are bound in the
surrounding definition context thanks to exporting binding and a definition host-
interface form. Flag arguments are simple local bindings.

U S E O F syntax-spec S E RV I C E S The cmdline language is macro exten-
sible. For example, the numbered-flags/f macro expands into a set of flag
definitions, one for each number in a range.

12.4 T I N Y H D L

The TinyHDL DSL (Savaton, 2021) is a hardware description language for experi-
menting with some concepts from Verilog and VHDL. Here is a half-adder in my
syntax-spec re-implementation:

114 A P L E T H O R A O F D S L S

(begin-tiny-hdl

(entity half-addere
([input a] [input b] [output sum] [output carry]))

(architecture half-adder-arche half-adder

(assign sum (xor a b))

(assign carry (and a b))))

Entity definitions describe the interface of a hardware component in terms of input
and output ports; an architecture implements an entity.

B I N D I N G S T RU C T U R E Unfortunately the binding rules for port names are
not expressible in the syntax-spec binding language. The port names that are
in scope in an architecture depend on the entity that the architecture implements.
Checking these references would require first resolving the entity reference in the
architecture and then consulting some associated scope to find the valid port names.
The “scopes as types” approach of Statix (Antwerpen et al., 2018), for example,
supports modeling such references. The syntax-spec binding language cannot
yet express such dependent references. Instead, my implementation of the DSL
treats the port names as uninterpreted identifiers in the binding language and uses a
separate static checking pass to ensure they are valid.

U S E O F syntax-spec S E RV I C E S TinyHDL names are protected from use
in Racket expressions. The DSL compiler uses persistent symbol tables to check
the dependent binding structure for ports.

12.5 M U LT I - S TAG E M I N I K A N R E N

Multi-stage miniKanren (Ballantyne et al., 2025) extends miniKanren with ideas
from multi-stage languages like MetaML (Taha, 1999). This makes it possible to
write relations whose execution is separated into staging-time and run-time parts.
The result of staging-time execution is a specialized program retaining the run-time
elements. When some arguments to a relation (or parts thereof) are statically known,
specializing to those arguments with staging can substantially improve run-time
performance. This is especially effective when the relation is an interpreter and
staging removes interpretive overhead.

Figure 12.1 presents a small interpreter written as a multi-stage miniKanren
program together with a query that is specialized by staged execution. The evalo
relation interprets boolean literals and or expressions. The query fills a hole in a
boolean expression sketch. Staging specializes the interpreter to the sketch. Each
query result includes a synthesized expression filling the hole and the value to
which the overall expression evaluates with the completion.

B I N D I N G S T RU C T U R E Multi-stage miniKanren has the same kinds of binding
structures as the miniKanren syntax-spec declaration of Figure 2.2.

12.5 M U LT I - S TAG E M I N I K A N R E N 115

(defrel/staged (evaloe es vs)

(fallback

(conde

((booleano e) (== e v))

((fresh (e1s e2s v1s)

(== e `(or ,e1 ,e2))

(evalo e1 v1)

(gather

(conde

[(== v1 #f)

(evalo e2 v)]

[(=/= v1 #f)

(== v1 v)])))))))

(run 4 (es vs)

(staged

(evalo `(or ,e #f) v)))

ó staging specializes the query to:
(run 4 (e v)

(fresh (e1 e2 v1)

(evalo/fallback1 e1 v1)

(conde

[(== v1 #f) (== v #f)]

[(=/= v1 #f) (== v v1)])))

ãÑ the query evaluates to the results:
'((#t #t)

(#f #f)

((or #t _.0) #t)

((or #f #t) #t))

Figure 12.1: A multi-stage miniKanren relation (left), and query with specialization and
execution (right).

U S E O F syntax-spec S E RV I C E S Using syntax-spec makes it easy for
the multi-stage miniKanren implementation to provide two interpretations of the
same core language. Every staged relation is compiled both as staging-time code
and as fallback, runtime code. Because miniKanren allows holes anywhere, even
values that are expected to be available at staging time may in fact be missing
data. In such cases, the specialized code calls the fallback version of the relation to
compute that portion.

Staging introduces additional static semantics because there is a distinction
between staged relations and relations that are only available at run time. The multi-
stage miniKanren implementation uses persistent symbol tables to implement the
check to ensure relations are called in the appropriate stage.

13
I N I T I A L C O M M U N I T Y A D O P T I O N

The syntax-spec system is publically available, and a number of DSLs using
the system have been created by other researchers and members of the Racket
open-source community. I also taught a course on DSL design and implementation
in Spring 2025 at Northeastern University titled “Hack Your Own Language”, and
some students created DSLs using syntax-spec. I provided technical support for
each of these projects’ use of syntax-spec, but the designs and implementations
of these DSLs are the product of their authors. As such, they demonstrate that
syntax-spec can support DSLs beyond those that I as the creator of syntax-spec
anticipated as ideal fits for the metalanguage. These developments have also led to
improvements to syntax-spec as well as identified shortcomings that would be
worth considering in the design of future similar metalanguages.

13.1 D O M A I N - S P E C I F I C C O N T R AC T L A N G UAG E S

Moy, Jung, and Felleisen (2025) present a collection of domain-specific contract
languages that implement logics used as part of software contracts. Trace con-
tracts (Moy and Felleisen, 2023) capture a history of events, often tied to specific
objects, and signal a contract violation if a property of the trace is refuted. Different
kinds of properties over traces are best expressed using different formalisms, so
Moy, Jung, and Felleisen provide a collection of logic DSLs for use with trace
contracts. Some of these implementations take advantage of syntax-spec in order
to implement static semantics, compilation, and macro extensibility.

For example, the following specification describes the expected behavior of a
component that manages TCP connections:

(define manager-qea

(qea

(@ port)

(start ready)

[-> ready '(listen ,port) listening]

[-> listening '(close-listener ,port) ready]))

The specification uses a Quantified Event Automata, or QEA (Barringer et al.,
2012). A QEA specifies a family of state machines, quantified over variables that
may appear in transition events. In this case, the quantifier ensures that a separate
machine tracks the state of each TCP port.

A second domain-specific contract language that makes interesting use of
syntax-spec implements Past-time Linear Temporal Logic, or PLTL (Lichten-

117

118 I N I T I A L C O M M U N I T Y A D O P T I O N

stein, Pnueli, and Zuck, 1985). The following formula, adapted from Havelund
et al. (2018), concerns a property of Java map, collection and iterator objects:

(define-pltl unsafe-map-iterator-violation

(D (m c i)

(^ (next i)

(♦ (S (update m)

(^ (iterator c i)

(♦ (create m c))))))))

It is formulated to describe the situation when the property is violated: When a
collection (c) is created from a map (m) and an iterator (i) is created from that
collection, and the underlying map is subsequently modified, it is an error to
continue to use the iterator. The statement describes this situation using PLTL’s
“once” (♦) and “since” (S) modalities. The existential quantification ensures a
violation is identified only when the recorded events concern related objects.

B I N D I N G S T RU C T U R E The QEA and PLTL DSLs both use bindings for logi-
cal quantifiers. The define-pltl form used in the example above is implemented
with a separate PLTL formula binding class and a host-interface form to allow
abstraction within PLTL formulas.

U S E O F syntax-spec S E RV I C E S Only a subset of syntactically valid
PLTL formulas can be handled by the DSL’s monitoring algorithm, so it im-
plements a static check to restrict programs to this subset. This static check uses
syntax-spec’s operation for computing the free variables of formulas. Similarly,
the compiler for QEAs computes the variables mentioned in patterns. Some forms
of PLTL are defined as syntactic sugar with macros.

13.2 Q I

Kasivajhula (2021)’s Qi DSL equips Racket with a point-free sublanguage. For
example, the following code computes the root mean square of a list of numbers:

;; (-> (listof number?) number?)

(define-flow root-mean-square

(-< (~> length (as ln))

(~> Δ (>< sqr) + (/ l) sqrt)))

Each expression in the language implicitly accepts and returns some number of
values, and the control-flow forms determine how those values flow between
expressions. The initial list is split along two paths by the -< “tee” junction form.
The threading form ~> passes a value from each flow to the next.

Thus the first path computes the length of the list, while the second path squares
each element, sums them, divides the sum by the previously computed length, and
finally takes the square root. The as form binds a variable to the value that flows

13.3 L E N S M AT C H 119

into it. Such bindings are useful to convey information that does not follow the
linear flow of threading.

Qi was initially implemented using conventional Racket macros, without support
for macro-extensibility or binding structure. Kasivajhula worked with me to port
Qi to syntax-spec and add these features. Qi now leverages the macro system
to desugar the DSL’s large surface syntax into a smaller core language. Further
work with Kasivajhula together with Dominik Pantůček and other Qi contributors
has taken advantage of the new architecture with syntax-spec to augment the
implementation with compiler optimizations including deforestation.

B I N D I N G S T RU C T U R E Bindings introduced by the as form use nested bind-
ing structure in order to match static scope to the runtime availability of values:
only references later in the flow may refer to the binding. The nested binding
position in the example above is annotated with a subscript n.

Certain forms in Qi that express branching and joining computations DSL could
benefit from DAG-structured rather than tree-structured scoping structure. This
would allow variables bound in both branches to be visible in the computation that
follows the join. Unfortunately, as discussed in the context of the PEG DSL in
Section 11.2.3, syntax-spec cannot express DAG-structured scope.

U S E O F syntax-spec S E RV I C E S The Qi DSL compiler lifts all as bind-
ings to the top-level of the flow and inserts assignment expressions in their original
positions. This strategy allows the compiler to otherwise remain a simple recursive
traversal of the syntax. The alphatisation provided by syntax-spec automatically
ensures that this transformation does not make the bindings visible in earlier por-
tions of the flow. Qi also leverages macro extensibility. Many of the forms in the
language are defined as macros on top of a core language.

13.3 L E N S M AT C H

Delmonaco (2022) introduces a lens-match DSL that supplements an implemen-
tation of functional lenses (Foster et al., 2007) with a pattern-matching language.
Pattern variables are bound to lenses, which may be used to modify the correspond-
ing path in the matched data. For example, a function that shifts the x-coordinate
of a circle’s Cartesian center point to the left is defined as follows:

;; (-> Circle Circle)

(define (shift-left circle)

(update circle

[(list colore radiuse (cons xe ye))

(modify! x sub1)]))

(shift-left (circle 'red 5 (cons 1 2)))

;; => (circle 'red 5 (cons 0 2))

120 I N I T I A L C O M M U N I T Y A D O P T I O N

The body of a match clause is conceptually a monadic context, where modify!

updates the contextual value in a functional manner.

B I N D I N G S T RU C T U R E The pattern variable production must come with a
binding rule that uses definition context binding structure. For example, the x

binding inside the cons pattern form must escape the form in order to be visible in
the modify! expression.

Unfortunately, exporting binding rules produce a surprising behavior in update

patterns. If a pattern variable’s name fn appears as the function name in a guard
pattern (? fn), like this:

(update (list 1 2)

[(list number? (? number?)) (modify! number? add1)])

then the first occurrence shadows the second one. Ideally, the binding of number? as
a pattern variable should be in scope only in the body of the update clause. Using
exporting binding rules, however, the pattern variable binding also captures the
reference in the guard pattern, which is really intended to refer to Racket’s number?
predicate. The syntax-spec binding language cannot express the expected binding
structure. The problem is the result of my design decision to map AST nodes one-
to-one to scope graph fragments.

U S E O F syntax-spec S E RV I C E S Macros are used to expand the language
of lens patterns down to only three core pattern forms: guard checking, conjunction,
and lens binding. For example, the cons pattern is defined by the following macro:

(define-dsl-syntax cons pattern-macro

(syntax-parser

[(cons a d) (and (? cons?) (lens car-lens a) (lens cdr-lens d))]))

The expanded pattern uses and to have the pattern match only when the (? cons?)

guard pattern matches and subsequently binds the a and d pattern variables to lenses.
Pattern variable bindings use a binding class to allow references appearing in the
body of an update clause to be transformed by reference compilers. A reference to
a pattern variable compiles to code that accesses part of the contextual value using
the lens associated with the pattern variable. A Racket set! expression referring
to a pattern variable compiles to code that modifies the portion of the contextual
value accessed by the lens.

13.4 L O G I C A L S T U D E N T L A N G UAG E

Piterkin and Jianu (2025) developed a syntax-spec re-implementation of Moy and
Patterson (2025)’s Logical Student Language (LSL) as a project in my “Hack Your
Own Language” course. The original implementation of LSL used the reflective
expander API I created prior to syntax-spec (Section 5.3) to manually define a

13.5 M I N I - D U S A 121

DSL-specific macro expander. The re-implementation aims to take advantage of
syntax-spec to simplify the implementation.

LSL is a teaching language designed to allow students to express and tests soft-
ware specifications using sophisticated forms of software contracts. For example
the following program expresses a dependent contract stating that the result of the
longest-string function must not be shorter than any string in the input:

(define (longer-than-in?e los)

(𝜆 (x) (andmap (𝜆 (s) (>= (string-length x) (string-length s)))

los)))

(: longest-string

(Function (arguments [loss (NonemptyList string?)])

(result (AllOf string? (longer-than-in? los)))))

(define (longest-string loss) #| elided |#)

The example is due to Moy and Patterson, modified to use the syntax-spec

re-implementation’s syntax.

B I N D I N G S T RU C T U R E The binding forms of LSL mirror those in Racket.
Beyond those binding forms in common, dependent contracts bind the names of
the function arguments for use in the result contract.

U S E O F syntax-spec S E RV I C E S Like Racket itself, LSL has a small core
language with other forms being defined as syntactic sugar via macros, enabled by
syntax-spec. Because LSL is targeted at students, it emphasizes providing infor-
mative error messages. The syntax errors provided automatically by syntax-spec

are acceptable, but better suited to professional programmers than learners. An
additional problem arises for contract failure messages. These messages contain
fragments of program syntax to indicate portions of the program involved in the
error. Macro expansion complicates this error reporting, because the syntax handled
by the compiler is the expanded core language, whereas users think in terms of the
surface syntax. The syntax-spec expander currently does not provide good tools
for accessing the surface syntax that corresponds to a portion of expanded syn-
tax. The LSL implementation has to work around these syntax-spec limitations,
which points to an important direction for future improvements to syntax-spec.

13.5 M I N I - D U S A

Prakash and Eisbach (2025) developed miniDusa, a re-implementation of the Dusa
finite-choice logic programming language (Martens, Simmons, and Arntzenius,
2025), as a project in my “Hack Your Own Language” course. This miniDusa
program queries for a 3-coloring of a graph:

122 I N I T I A L C O M M U N I T Y A D O P T I O N

(logic

(graph edgee
('a ['b 'c 'e])

('c ['b 'd]))

(((colore Xe) is 1 2 3) :- (edge X _))

(forbid (edge Xe Ye)

((color X) is C)

((color Y) is C)))

Here, graph is a application-specific extension (created via a macro) that encodes
a graph as a symmetric edge relation. Finite-choice logic programming extends
Datalog with functional dependencies, indicated by rules using the is keyword.
In this program, color is constrained to globally act as a function, mapping each
input to just one of 1, 2, or 3. This ensures that nodes are assigned a unique color
in the graph coloring.

B I N D I N G S T RU C T U R E Relation and logic variable names in miniDusa both
use exporting binding structure and are bound by the first occurrence in a given
scope. Relation names are scoped to an entire logic block while logic variable
names are scoped to individual rules. Realizing this scoping structure is possible
but not straightforward in syntax-spec.

The first challenge is that syntax-spec expects distinguished binding and
reference positions. However, miniDusa uses the convention common in logic
programming languages that variables occurring anywhere in a rule are implicitly
understood to be quantified. No particular occurrence of a logic variable is distin-
guished as the binding occurrence. To work around this difference, the miniDusa
implementation considers the first occurrence the binder and expands other occur-
rences as references. This is accomplished using a rewrite production that checks
during expansion whether a name is already bound and conditionally expands to a
binding or reference form:

(~> v:id

(if (lookup #'v (binding-class-predicate logic-var))

#'(#%ref v) ; if v has been bound as a logic-var already

#'(#%bind v)))

The same trick is applied for relation names.
The second challenge is that relation and logic variable binding occurrences both

occur within rules, but should have different scope. Unfortunately, syntax-spec
can assign only a single scoping structure to a given syntax. To work around this,
the expansion process for miniDusa uses another rewrite production to look into
rules and extract relation names to bind in an outer position. This is possible
because the positions where miniDusa is macro extensible do not overlap with the
portion that needs to be eagerly analyzed for this extraction.

13.5 M I N I - D U S A 123

Although it is possible to work around these scoping structure issues with rewrite
productions, they point to important limitations of the syntax-spec binding-rule
language.

U S E O F syntax-spec S E RV I C E S The miniDusa compiler checks several
simple static semantic properties, including that relations are used with the correct
number of arguments and that variables and functional relations may appear only
in certain positions. After static checking and elaboration, the compiler expands to
quoted syntax that is interpreted at runtime.

The miniDusa implementation takes advantage of the macro-extensibility offered
by syntax-spec to implement certain forms such as forbid by expansion to
lower-level rules. Macros can also be useful to miniDusa programmers for encoding
domain-specific data and computations into the restricted language of miniDusa
rules, as in the example of the graph macro.

Taking advantage of syntax-spec’s approach to multi-language structure,
miniDusa also allows programmers to easily import Racket functions for use
in functional dependencies. This feature goes beyond what is offered in the original
Dusa implementation, which only includes a limited set of built-in relations.

14
E VA L U AT I O N

The DSLs in the preceding chapters illustrate that syntax-spec can express a
wide range of DSLs but also imposes certain limitations. This chapter begins with
an evaluation that summarizes what these DSL implementations tell us about the
expressivity of syntax-spec and the services it provides DSL creators. Next, I
explore the advantages of syntax-spec over existing, low-level macro implemen-
tation approaches. Finally, I examine the performance cost of the system.

14.1 E X P R E S S I V E N E S S A N D U T I L I T Y

This section summarizes the way that the 13 DSL implementations discussed
in this part use syntax-spec. The use of syntax-spec is evaluated across 12
dimensions forming three categories. These categories address how each DSL
benefits from syntax-spec’s multi-language approach, whether it easily fits within
the declarative language, and whether it benefits from the specific tools offered by
syntax-spec.

Evaluation dimensions

The first category of dimensions concerns how the DSLs take advantage of multi-
language structure, implementing sophisticated compilation while still fluently
integrating with Racket:

S TAT I C S E M A N T I C S Does the DSL enforce a static semantics beyond the gram-
mar and binding checks provided by syntax-spec?

N O N - L O C A L C O M P I L AT I O N Does the DSL compile in a way that is not syntax-
directed, such that the compilation would be difficult to accomplish with a
composition of conventional macros?

H O S T E X P R E S S I O N S Does the DSL include racket-expr host subexpression
positions?

D E F I N I T I O N I N T E R F AC E Does the DSL use definition host-interface forms to
integrate with Racket definition contexts?

P ROT E C T E D N A M E S Does the DSL use binding classes to restrict or transform
uses of DSL names in host expressions?

125

126 E VA L UAT I O N

The second category describes the DSLs’ use of syntax-spec’s declarative
binding language:

E X P O RT S Does the DSL implement separate scope and binding forms with
export (beyond the exports in any definition host-interface forms)?

N E S T I N G Does the DSL use nested binding rules?

F A I T H F U L LY E X P R E S S E D Can syntax-spec faithfully express all of the bind-
ing structure desired by the DSL designer?

The final category describes the DSLs’ use of specific services offered by
syntax-spec, which are derived from the declared syntax and binding structure:

S Y M B O L TA B L E S Does the DSL use symbol tables to implement static checks
or optimizations?

B I N D I N G A N A LY S E S Does the DSL use operations like free-variables that
expose syntax-spec’s analysis of binding structure?

C O M P I L E R H Y G I E N E Does the DSL implementation rely on alphatisation to
make certain transformations performed by the compiler hygienic?

M AC RO E X T E N S I B I L I T Y Does the DSL take advantage of macros for sugar or
user extensions?

14.1
E

X
P

R
E

S
S

IV
E

N
E

S
S

A
N

D
U

T
IL

IT
Y

127

Table 14.1: Summary of DSLs’ use of syntax-spec

mK PEG State Class cmdline TinyHDL ms-mK QEA PLTL Qi Lens LSL miniDusa

(10) (11) (12.1) (12.2) (12.3) (12.4) (12.5) (13.1) (13.1) (13.2) (13.3) (13.4) (13.5)

Multi-language structure
Static semantics ✓ ✓ ✓ — — ✓ ✓ — ✓ — — — ✓

Non-local compilation ✓ ✓ ✓ ✓ ✓ — ✓ — — ✓ — — —

Host expressions ✓ ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ ✓ ✓ ✓

Definition interface ✓ ✓ ✓ — ✓ ✓ ✓ — ✓ ✓ — ✓ —

Protected names ✓ ✓ ✓ ✓ — ✓ ✓ ✓ ✓ — ✓ ✓ ✓

Binding structure
Exports — — ✓ ✓ — ✓ — ✓ — — ✓ ✓ ✓

Nesting — ✓ ✓ — — — — — — ✓ — — ✓

Faithfully expressed ✓ X ✓ ✓ ✓ X ✓ ✓ ✓ X X ✓ ✓

Use of syntax-spec services
Symbol tables ✓ ✓ ✓ ✓ — ✓ ✓ — — — — ✓ —

Binding analyses — — — — — — — ✓ ✓ — — — —

Compiler hygiene ✓ ✓ — — — — — — — ✓ — — —

Macro extensibility ✓ ✓ — ✓ ✓ — ✓ — ✓ ✓ ✓ ✓ ✓

DSL size
syntax-spec LOC 59 59 41 25 58 44 107 34 43 154 23 107 63

Total LOC 4548 641 169 126 257 144 812 313 377 2442 159 1395 742

128 E VA L UAT I O N

Results

Table 14.1 presents the results. The bottom two rows record the lines of code for
the complete DSL implementation and how many of these lines are syntax-spec
definitions.

The four Xs in the “faithfully expressed” row indicate shortcomings of the
expressive power the current syntax-spec binding rules, that is, cases where
syntax-spec cannot express the binding structure from the original DSL de-
sign. The PEG and Qi designs feature DAG-structured binding for branching-and-
rejoining computation structures. The TinyHDL design includes dependent binding
structure, where one reference points a composite structure (in this case a TinyHDL
“entity”), and the names of the components of that structure should also be in
scope. Finally, the Lens-match design intends that pattern variables splice out of
pattern forms and bind the body of a match, without capturing references elsewhere
in the pattern. The simple tree-structured and syntax-directed binding structure
accommodated by syntax-spec’s binding language cannot express these designs.
The corresponding sections for each of these DSLs describe the problems in more
detail.

Most of the syntax-spec features are widely used across the selection of DSLs.
The binding analysis features for computing, e.g., the free identifiers of a term are
less widely used. This is in part because these features were added more recently
to syntax-spec, so some DSLs implement these analyses manually instead. The
binding analyses also cannot yet handle certain situations with nested binding or
host-language subexpressions as discussed in Sections 8.2 and 11.2.3. Only the
miniKanren, PEG, and Qi DSL implementations rely on compiler hygiene because
these are the only implementations that perform complex program transformations
to implement compiler optimizations.

14.2 C O N C I S I O N

Five of the DSLs discussed in this part have previous, comparable implementa-
tions using lower-level macro programming techniques. Specifically, all of these
implementations employ a manually-written DSL-specific macro expander.

Table 14.2 provides a quantitative assessment of the relative effort required
for these implementations. The first row labeled “syntax-spec LOC” reports
the numer of lines of code required to declare the grammar and binding rules in
syntax-spec. The second row labeled “Procedural LOC” reports the number of
lines in the alternative implementation’s manually-written macro expander.

Beyond the obvious quantitative advantage, a syntax-spec implementation
comes with two important qualitative advantages. The first one concerns the elimi-
nation of design patterns in macro programming. Like OO design patterns, macro
design patterns indicate weaknesses in the macro system. Further, the patterns
obscure the actual specification of the DSL. By contrast, the syntax-spec sys-

14.2 C O N C I S I O N 129

Table 14.2: Comparison of case study implementations based on syntax-spec and
manually-written macros

Class TinyHDL PEG miniKanren cmdline

syntax-spec LOC 25 44 59 59 58

Procedural LOC 78 87 109 97 82

tem eliminates those patterns and allows programmers to focus on the essence of
specifying grammars and binding structures.

The second advantage is the elimination of the need to understand Racket’s
complex macro system APIs, concepts such as scope sets (Flatt, 2016a), and the
need to think in low-level imperative terms. A manually written DSL expander
traverses syntax objects, annotates scope, and manipulates a compile-time environ-
ment. These operations are achieved through either Racket’s low-level expander
API (Flatt et al., 2012) or the library discussed in Section 5.3. Both APIs require
advanced knowledge of Racket’s expander, scoping, and syntax models to use.

(define/hygienic (expand-peg stx) #:definition

(syntax-parse stx #:literal-sets (peg-literals)

[nonterm-name:id #:when (lookup #'nonterm-name peg-non-terminal?)

#'nonterm-name]

[(: var-name:id subexp:peg)

(define/syntax-parse subexp^ (expand-peg #'subexp))

(define/syntax-parse var-name^ (bind! #'var-name (racket-var)))

#'(: var-name^ subexp^)]

[(=> subexp:peg action:expr)

(with-scope sc

(define/syntax-parse subexp^ (expand-peg (add-scope #'subexp sc)))

(define/syntax-parse action^ (local-expand (add-scope #'action sc)))

#'(=> subexp^ action^))]

;; elided cases for eps, seq, alt, *, +, token, peg-datum

[(macro-name:id rest ...) #:when (lookup #'macro-name peg-macro?)

(define transformer

(peg-macro-transformer (lookup #'macro-name peg-macro?)))

(expand-peg (transformer stx))]))

Figure 14.1: Ballantyne, King, and Felleisen (2020)’s manually-written expander for the
PEG DSL

To give a sense of what these manually-written expanders look like, Figure 14.1
shows a fragment of the expander for the PEG DSL. It recurs through DSL syntax;
it attaches scoping information to syntax objects and reflects bindings into the
Racket expander’s compile-time environment; and at macro uses, the DSL-specific
expander retrieves the macro transformer and uses an API call to hygienically apply
it. To provide IDEs with static binding information, it must also propagate syntax

130 E VA L UAT I O N

properties from the surface syntax to the expanded code. All of this is accomplished
with the manual invocation of the Racket expander (local-expand), scope ma-
nipulation (with-scope, add-scope), management of the expander environment
(bind!, racket-var, lookup).

By comparison the declarative approach of syntax-spec hides all of these
details and requires only an understanding of tree grammars and the binding
language. As a result, the language implementor can focus on the essence of DSL
design and implementation.

14.3 E X PA N S I O N P E R F O R M A N C E

In my experience with syntax-spec so far I have not encountered performance
problems that inhibited practical use, but most of the programs I have developed
are relatively small. This section presents the results of a preliminary evaluation of
the expansion-time performance of syntax-spec to identify the current limits of
the system’s scalability. I have yet to invest any effort in improving expansion-time
performance, so it is likely that these results can be improved with future work.

The miniKanren implementation presented in Chapter 10, hosted-minikanren,
provides an ideal opportunity for comparison because its surface syntax is mostly
compatible with faster-minikanren (Ballantyne, 2024). In fact, after performing
optimizations hosted-minikanren generates code that uses a mixture of the
faster-minikanren surface syntax and internal runtime system components.
The implementation of faster-minikanren is a shallow embedding with a layer
of conventional macros on top.

Table 14.3: Time required to expand and compile the hosted-minikanren benchmark
suite. All experiments ran on a MacBook Pro with an M2 Pro CPU and 16GB
of RAM with Racket 8.17.

hosted-minikanren with all optimizations 3743 milliseconds

hosted-minikanren with no optimizations 3012 milliseconds

faster-minikanren 981 milliseconds

As a first point of comparison, Table 14.3 reports the time required to ex-
pand and compile the 3013 lines of code of the hosted-minikanren bench-
mark suite using each system. In the configuration where optimizations are dis-
abled, hosted-minikanren does little more than expand and check syntax with
syntax-spec and then delegate further compilation to faster-minikanren.
Given this layering, the expansion cost for hosted-minikanren must include
the cost for the further expansion of the generated faster-minikanren code.
Nonetheless, the approximately 3x higher expansion time for hosted-minikanren
without optimizations over faster-minikanren suggests that the syntax-spec
portion of expansion is especially slow. A likely cause is interpretive overhead.

14.3 E X PA N S I O N P E R F O R M A N C E 131

Table 14.4: Expansion time scalability of hosted-miniKanren as compared to faster-
miniKanren. The reported values indicate the largest 𝑛 for which expansion
and compilation of a program following each schema completes in less than
10 seconds, in hosted-miniKanren and faster-miniKanren respectively. All
experiments ran on a MacBook Pro with an M2 Pro CPU and 16GB of RAM
with Racket 8.17.

Benchmark 𝑛 for hosted-mK 𝑛 for faster-mK

Relation with 𝑛 conjoined blocks 270 1072

Relation with fresh bindings nested 𝑛 deep 239 521

Module with 𝑛 trivial relation definitions 549 4983

Relation with 𝑛 boundaries back-and-forth 18 636

Whereas the Racket expander has specialized code for each core language form,
the current implementation of syntax-spec interprets binding specifications to
drive expansion. It may be possible to improve expansion performance via an
implementation that statically specializes expansion to each binding specification.

Certain shapes of program can be expected to incur specific expansion costs.
Table 14.4 presents synthetic benchmark that test expansion time for programs that
are large in particular dimensions. The table reports the largest size 𝑛 for each given
dimension in which a program can expand and compile in less than 10 seconds.
Nested bindings are interesting because Racket’s “binding as sets of scope” hygiene
incurs a non-linear cost as nesting depth increases, as each identifier is annotated
with scopes for all the surrounding binding forms. However, this cost is incurred
similarly by both systems. The scaling limits for hosted-minikanren as com-
pared to faster-minikanren are especially severe in the case of many relation
definitions and of many boundary crossings. The overhead for relation definitions
is likely due to the trampolining expansion process for definition-context host-
interface forms (Section 8.3) and the expansion of persisted symbol table entries
(Section 8.4). The cost of nested boundary crossings is likely due to re-expansion
incurred by the delayed expansion implementation for host subexpressions (Sec-
tion 8.2). The Turnstile system (Chang et al., 2019) encountered a similar problem,
though there the re-expansions occur at every subexpression rather than at language
boundaries. Critically, the faster-minikanren version of the boundary-crossing
benchmark is not directly comparable because its implementation of the boundaries
does not enforce the abstraction boundary of the DSL.

Part IV

R E F L E C T I O N

15
L O O K I N G B A C K

This dissertation introduces multi-language macros and shows how they make
it possible to implement DSLs with a confluence of desirable properties. Multi-
language macros extend a host language with additional fragments of a multi-
language rather than individual syntactic forms. The host language’s syntax check-
ing, binding analysis, and macro expander are augmented to handle the added
parts, creating a unified front-end that understands the DSL, the host, and their
interactions.

Multi-language structure facilitates the implementation of a static semantics and
optimizing compiler for a DSL in several ways. The DSL compiler receives each
contiguous fragment of DSL code as a compilation unit, allowing it to analyze
and transform the entire chunk. The macro system provides tools for conveying
compile-time information between fragments separated by host-language code to
enable a global static semantics. And finally, it is straightforward to protect all
boundaries between the DSL and host language with contracts to maintain the
internal invariants of the DSL.

At the same time, interaction between the DSL and host language remains
fine-grained. DSLs can contribute definitions to host language modules, and DSL
code can embed host-language subexpressions. Code in each language can refer to
names bound in the other, to the degree allowed by the DSL specification. Syntactic
extensions can abstract over multi-language code to implement features that require
the expressive power of both languages and to integrate separately developed DSLs.

To allow for the declarative definition of multi-language extensions, my approach
marries language workbench technology with macro systems. The syntax-spec
system brings a grammar and binding structure specification metalanguage into a
general-purpose language as a library. Further, it builds on top of the conventional
macro system already present in Racket. This positioning allows for a gentle
learning curve from general-purpose programming to language extension with
conventional macros, and finally to DSL creation with multi-language macros.
None of these steps require programmers to abandon their existing tools, build
processes, or programming environment.

Several novel technical contributions are required to weave together the sepa-
rate strands from multi-language semantics, language workbenches, and macro
systems. First, I extend Racket’s “sets of scopes” hygienic macro expansion to
handle any DSL core language declared in syntax-spec. The constraints of hy-
gienic expansion require a new binding language design, yielding syntax-spec’s
lightweight binding specifications. Second, I integrate the DSL expansion and host
expansion processes, without requiring significant extensions to the host-language

135

136 L O O K I N G B AC K

expander. This integrated expansion process also addresses cross-language name
references via reference compilers, ensuring that DSL compilers can interpose on
every boundary between languages. Finally, I layer compiler hygiene and persistent
symbol tables atop Racket’s lower-level primitives to make it easy to work with
names in DSL compilers.

The 13 DSLs explored in Part iii demonstrate how syntax-spec lowers the
barrier to creating complex domain-specific languages. Small DSLs like my imple-
mentation of state machines can check syntax, integrate with Racket definitions
and expressions, enforce a static semantics, and implement a non-local compilation
strategy with fewer than 200 lines of code. Larger DSLs like the miniKanren
optimizing compiler can realize optimizing compilation with substantial perfor-
mance speedups while safely interacting with Racket. The declarative nature of
syntax-spec makes these implementations concise and automatically provides
features including macro extensibility and IDE services to every DSL. Beyond the
immediate technical benefits, working with syntax-spec declarations allows DSL
creators to think and communicate at the level of their DSL design rather than in
terms of low-level details.

16
L O O K I N G F O R WA R D

The syntax-spec system represents a leap forwards for macros in the Lisp family
of programming languages as a tool for building multi-language DSLs. At the same
time, many directions for future work remain open. These include improving IDE
services, simplifying macro hygiene, integrating with visual and interactive syntax,
taking advantage of multi-language structure for formal reasoning, and using
multi-language structure to integrate execution across disparate hardware targets.
The syntax-spec design could also be brought to other languages, which would
require further research into the integration of the metalanguage with conventional
concrete syntax and type systems.

16.1 A R I C H E R C O N N E C T I O N T O T H E I D E

DSLs created with syntax-spec integrate with the DrRacket IDE in the same
manner as other macro-based DSLs in Racket (Feltey et al., 2016). However, the
provided services are limited to error highlighting, jump-to-definition, and rename
refactorings. Macro-extensible languages have long faced challenges providing ad-
vanced IDE services. Syntax defined by a macro is specified only via its procedural
expansion into host-language syntax. This lack of structure makes it difficult to
implement parsing, name analysis, or typechecking processes that recover from
errors. Autocompletion faces a similar problem taking into account the grammar
and static semantics of a macro-defined DSL.

Looking ahead, the syntax and binding rule declarations in syntax-spec pro-
vide the structure that is missing from conventional macro definitions. Thus it
should be possible for syntax-spec to derive rich IDE services from DSLs spec-
ifications, just as language workbenches such as Spoofax do (Pelsmaeker et al.,
2022). The open challenge lies in connecting the editor-service code that would
be generated by syntax-spec to the IDE. One possible approach is to modify
the interface for macros to separate out analysis and compilation procedures.
The analysis procedure would return the information needed to implement IDE
services. The host language could then expose these services via the Language
Server Protocol (Bünder and Kuchen, 2020; Microsoft Corporation, 2022). While
the task of implementing such an analysis interface for each language extension
would be a burden for a traditional macro author, syntax-spec could generate it
automatically.

The macro system of Lean 4 (Ullrich, 2023) takes a step in this direction
by separating each macro definition into a parser extension and a transformer.
To the extent that the parser can recover from errors, the IDE can understand

137

138 L O O K I N G F O RWA R D

syntactic structure even when expansion fails. However, binding information and
name completion candidates are discovered by elaborating the core Lean syntax
that results from macro expansion. The IDE thus cannot provide services based
on this information for regions of program text that are defined by macros that
fail to expand. With the benefit of binding structure declarations in addition to
grammatical information, syntax-spec could in principle recover from errors
encountered during elaboration to provide binding-based IDE services even when
DSL compilation fails.

The ability to analyze incomplete programs is potentially useful in contexts
beyond IDEs for human programmers. Blinn et al. (2024) demonstrate that program
synthesis with large language models can benefit from semantic context derived
from the expected type and environment at the hole to synthesize. They propose
a language server protocol extension for exposing such information. A multi-
language macro system that also accommodates type system declarations could
provide such a service.

16.2 R E P L AC I N G C O N V E N T I O N A L M AC RO S A LT O G E T H E R

While syntax-spec provides a combination of multi-language macros for the
DSL core and conventional macros for sugar, it would be worth exploring a system
in which all macros come with grammar and binding specifications. Such a system
could provide more reliable IDE services and implement macro hygiene more
simply.

As discussed above, grammar and binding declarations can help IDE analyses
handle incomplete and erroneous programs. Providing quality IDE services in all
situations would require having this information for the entire surface syntax. Fully
separating analysis and expansion would also simplify the task of making analysis
incremental. As a programmer edits a program in an IDE, every keystroke yields a
new program that needs analysis. Re-using portions of previous analysis results
that are still valid allows for more responsive IDE services (Pacak, Erdweg, and
Szabó, 2020). Racket’s procedural macros allow arbitrary computations including
side effects, so in general expansion cannot be made incremental. Separating out
an analysis pass with a restricted structure while confining general computation
and effects to the DSL compilation pass could solve this problem. The analysis
process could nonetheless have a procedural foundation so that programmers can
manually implement analysis for syntaxes that are not expressible in the declarative
specification language.

Having binding rules for every form could also enable a simpler approach to
hygiene. Conventional macro hygiene is complex because the binding structure of
the use-site and template syntax is not apparent until after they are combined by
expansion. With binding structure defined up-front, hygienic resolution could be
less lazy. Conventional hygiene is particularly difficult to implement for certain
patterns of expansion that arise in multi-language DSLs. For example, in Racket’s

16.3 D S L S F O R D O M A I N E X P E RT S 139

class DSL, macros may abstract over forms in the class body. The class macro
uses local-expand to eliminate such macros uses before compiling the class core
language (Flatt et al., 2012). What complicates hygiene is that the initial expan-
sion process is not complete—it does not process method bodies, for example.
The expansion of method bodies only resumes when the compiled code is further
expanded. Expansion in syntax-spec follows this same structure, delaying expan-
sion for racket-expr host subexpression positions. Hygienic expansion for such
partial local-expansions could be simpler if all the syntactic forms involved come
with explicit binding rules. In particular, resolving hygiene for macro expansion
steps targeting the DSL core language would not need information derived from
the subsequent compilation from DSL to Racket. A simpler hygiene algorithm
could in turn relax the constraints that “sets of scopes” hygiene imposes on the
design of the binding specification language, which are discussed in Chapter 9.

16.3 D S L S F O R D O M A I N E X P E RT S

Some DSLs are designed with non-programmer domain experts in mind, rather than
software engineers. Implementing a DSL for non-programmers demands different
design considerations than those addressed by syntax-spec. Fluid integration
with general-purpose code and standard programming tools is less critical. How-
ever, providing structured editing to reduce errors, guidance via autocompletion or
form-like interfaces, and live reaction to edits to show their effects become more
important. Visual representations of domain concepts can also make their manip-
ulation more tangible. Language workbenches such as JetBrains MPS (Voelter
and Lisson, 2014) that produce external DSLs equipped with projectional editors
provide advantages for these situations.

Nonetheless, syntax-spec may sometimes be a good way to create DSLs for
domain experts. Especially for initial prototyping, the ease with which a library-
based DSL integrates into an existing software project may present an attractive
trade-off against the advantages of a more sophisticated implementation in a
standalone workbench. As I improve the IDE services provided by syntax-spec,
this trade-off becomes more advantageous.

Several directions of prior work suggest ways to integrate the custom editor
services and visual and interactive elements that are important for domain experts.
“Editor libraries” allow DSLs to provide custom editor services such as refac-
torings (Erdweg et al., 2011a). “Visual syntax” provides a mechanism for using
interactive visualizations in place of textual syntax for macro-defined language ex-
tensions (Andersen, Ballantyne, and Felleisen, 2020). Along similar lines, “livelits”
provide interactive syntactic elements that take on a more limited linguistic role
but integrate with live evaluation (Omar et al., 2021). Integrating visual, interactive
elements with the multi-language approach of syntax-spec could yield a system
that works well for domain experts and software engineers alike.

140 L O O K I N G F O RWA R D

16.4 R E A S O N I N G A N D V E R I F I C AT I O N

Given that syntax-spec gives DSLs a multi-language structure, techniques em-
ploying multi-language semantics would be appropriate for reasoning about DSLs
defined in the system. Because each syntax-spec DSL compiles to Racket and the
overall system is open to extension, compositional compiler correctness (Perconti
and Ahmed, 2014) or semantic type soundness via realizability models (Patterson,
2022) would be most applicable. Such techniques would only establish the correct-
ness of a formal model of a DSL rather than the actual implementation, because the
complete semantics of Racket and syntax-spec are not themselves formalized
and their implementations are not verified.

More speculatively, one could imagine building a multi-language macro system
for a host language that is itself verified and which supports mechanized proofs.
In such a setting, a multi-language macro could require that extensions provide a
compiler correctness proof. Each DSL might specify a multi-language operational
semantics extending that of the host. Then, a compiler correctness proof in the
style of Perconti and Ahmed (2014) could show that compilation preserves the
DSL semantics in all host contexts.

Or, for a weaker guarantee, the system could require that the DSL specify a
realizability model defining the meaning of DSL types. Then the required proof
would show that the DSL compiler produces host terms that are in the realizability
relation indexed at the appropriate DSL type. A declaration that defines a bound-
ary between multiple DSLs would prove the type soundness of this FFI via the
technique of Patterson et al. (2022).

16.5 B E Y O N D T H E R AC K E T V M

Many DSLs exist to take advantage of special-purpose hardware like GPUs. Of
course, computations performed on such special-purpose hardware need to connect
to the general-purpose code that provides access to data and orchestrates tasks.
BraidGL (Sampson, McKinley, and Mytkowicz, 2017) combines multi-language
programming and staging to make such interactions convenient in the context of
graphics programming. Similarly, multitier programming languages (Weisenburger,
Wirth, and Salvaneschi, 2020) allow a single program to express a computation
whose execution is distributed across different platforms, like a web browser,
backend server, and database.

Multi-language macros would be a natural fit for implementing these kinds of
multi-target DSLs. The DSL core language declared in syntax-spec need not
have any relationship to Racket’s core language. While the DSLs discussed in
Part iii all eventually compile to Racket code, a DSL compiler could equally well
generate code for another platform. Explicit language boundaries and the reference
compilers associated with syntax-spec binding classes provide an opportunity to
insert code to communicate data between execution targets.

16.6 S C A L I N G U P T O M A I N S T R E A M H O S T L A N G UAG E S 141

For GPU programs, compilation could write GLSL (Kessenich, Baldwin, and
Roost, 2023) or CUDA (NVIDIA, 2007) code to an external file, compile it, and
dynamically link with it via the Racket FFI. For multitier programs, compilation
could generate JavaScript code for a Racket program to serve in response to
HTTP requests. As a small experiment in this direction, I have implemented
an S-expression syntax for a subset of JavaScript in syntax-spec.1 The DSL
compiler emits an AST in JSON format and generates JavaScript source using the
escodegen library.2

Previous work in the Racket ecosystem has demonstrated such multi-target
interactions. In the absence of a tool like syntax-spec, these systems have re-
quired complicated architectures and boilerplate to define their core language,
check syntax, and expand macros. Magnolisp (Hasu and Flatt, 2016) is a language
built atop Racket that compiles to C++, managing the code for external execution
using Racket’s submodules. To accomplish DSL expansion, MagnoLisp encodes
its DSL syntax into a subset of Racket syntax, expands with the standard Racket
expander, and later extracts a DSL AST from this expanded code. Sham (Walia,
Shan, and Tobin-Hochstadt, 2021) provides a toolkit for building DSLs hosted in
Racket’s syntax that compile via LLVM and link with Racket. The Sham front-end
uses Racket macros that expand to a shallow embedding in Racket to handle DSL
name bindings. The shallow embedding code then evaluates to a deep embedding.
Urlang3 provides a Racket front-end for JavaScript syntax. It uses a manually
written DSL expander, with drawbacks similar to those discussed in Section 14.2.

16.6 S C A L I N G U P T O M A I N S T R E A M H O S T L A N G UAG E S

The real value of multi-language macros will only be realized when they become
available in mainstream programming languages. Languages such as Clojure,
Elixir, Haskell, Julia, Lean, Rust, and Scala already include procedural macro
systems that a multi-language macro system could be layered on top of. However,
several challenges present themselves: limitations of the available reflective APIs,
integration with conventional syntax, and integration with typechecking.

Although the basics of a metalanguage like syntax-spec can be hosted atop
most procedural macro systems, its support for multi-language interaction between
DSL and host requires a reflective compile-time API. Most essentially, the analysis
function for a DSL must be able to (1) determine whether a name has a meaning
established in the surrounding host context; (2) create an extended binding environ-
ment with entries for new names; and (3) analyze a host language subexpression
in such an extended environment. In Racket, definition contexts, local-expand,
and manipulation of scope sets provide these capabilities. Additional reflective
operations are needed for implementing reference compilers, conveying static

1 https://github.com/michaelballantyne/syntax-spec/blob/v3/tests/dsls/js/js.rkt

2 https://github.com/estools/escodegen

3 https://github.com/soegaard/urlang

https://github.com/michaelballantyne/syntax-spec/blob/v3/tests/dsls/js/js.rkt
https://github.com/estools/escodegen
https://github.com/soegaard/urlang

142 L O O K I N G F O RWA R D

information across separate compilation, and recording information for the IDE,
as explored in Chapter 8. Outside of Racket, macro systems in dependently typed
languages that build on top of elaborator reflection (Christiansen and Brady, 2016)
provide some of the needed operations. Lean 4 (Ullrich, 2023) and Agda4 are two
examples of such languages.

A multi-language macro system hosted by a language with conventional syntax
would need to integrate with the host’s parser. Two approaches are represented
in modern macro systems. The first option is to use an extensible parser, as for
example in Lean. The second option is to use a reader syntax that is flexible
enough to represent extensions but structured enough to delimit regions defined by
macros, as in Rust and a variety of other systems (Bachrach and Playford, 1999;
Disney et al., 2014; Flatt et al., 2023; Rafkind and Flatt, 2012). In either case, the
grammar provided in a language declaration would describe strings rather than
S-expressions.

Many popular languages are statically typed. In a typed language programmers
would benefit substantially from integration between the type systems of each DSL
and the host language. Ideally, a multi-language macro system in a typed host
would feature a metalanguage like Statix (Antwerpen et al., 2018) for specifying
DSL type systems, suitably modified to integrate with the host’s type system. A
macro API that provides the right kind of interaction with the host language type
system is an open research problem. The Turnstile metalanguage for Racket (Chang
et al., 2019; Chang, Knauth, and Greenman, 2017), the Klister language (Barrett,
Christiansen, and Gélineau, 2020), recent work on implementing typed languages
with micros (Bocirnea and Bowman, 2025), and type tailoring (Wiersdorf et al.,
2024) suggest potential directions. Once again, Lean’s elaboration system has
some of the needed facilities, providing reflection on host types but lacking certain
features needed to connect host and DSL typechecking.

Managing the type environment for certain kinds of type system extensions
poses a particular challenge. Multi-language static semantics typically require that
the typechecker for each component language propagate the type environment for
the other components (Matthews and Findler, 2007; Patterson et al., 2017). While
Lean’s metaprogramming system provides a mechanism for augmenting its global
typing context with additional kinds of entries, this capacity does not extend to
the local typing context. The problem is especially challenging in the case of a
substructural DSL type systems. For example, Patterson et al. (2022) present a
multi-language with an ML-like fragment and an affine fragment. The typing rules
must split the affine environment for all composite terms, even in the ML-like
fragment of the language. In the context of extending a host language with an affine
DSL, this would require that the extension be able to modify the host-language
typing rules to split the affine environment.

Extending syntax-spec’s multi-language approach to address these additional
facets of conventional syntax and typechecking would complete the promise of

4 https://agda.readthedocs.io/en/v2.8.0/language/reflection.html#macros

https://agda.readthedocs.io/en/v2.8.0/language/reflection.html#macros

16.6 S C A L I N G U P T O M A I N S T R E A M H O S T L A N G UAG E S 143

language-oriented programming. Each DSL could realize domain-specific advan-
tages via custom concrete syntax and type systems, in addition to optimizing
compilation. And finally, building such a system for a mainstream host language
would at last bring quality tools for language-oriented programming to a broad
audience.

B I B L I O G R A P H Y

Allen, Eric, Ryan Culpepper, Janus Dam Nielsen, Jon Rafkind, and Sukyong Ryu
(2009). “Growing a syntax.” In: Proc. Workshop on Foundations of Object-
Oriented Languages. URL: https://www.cs.cmu.edu/~aldrich/FOOL09/
allen.pdf.

Andersen, Leif, Michael Ballantyne, and Matthias Felleisen (Nov. 2020). “Adding
Interactive Visual Syntax to Textual Code.” In: Proc. ACM Program. Lang.
4.OOPSLA. DOI: 10.1145/3428290.

Andersen, Leif, Stephen Chang, and Matthias Felleisen (Aug. 2017). “Super 8
languages for making movies (functional pearl).” In: Proc. ACM Program. Lang.
1.ICFP. DOI: 10.1145/3110274.

Antwerpen, Hendrik van, Pierre Néron, Andrew Tolmach, Eelco Visser, and Guido
Wachsmuth (2016). “A constraint language for static semantic analysis based on
scope graphs.” In: Proc. Partial Evaluation and Program Manipulation. PEPM
’16, 49–60. DOI: 10.1145/2847538.2847543.

Antwerpen, Hendrik van, Casper Bach Poulsen, Arjen Rouvoet, and Eelco Visser
(Oct. 2018). “Scopes as types.” In: Proc. ACM Program. Lang. 2.OOPSLA. DOI:
10.1145/3276484.

Atkey, Robert, Sam Lindley, and Jeremy Yallop (2009). “Unembedding domain-
specific languages.” In: Proc. Symposium on Haskell. Haskell ’09, pp. 37–48.
DOI: 10.1145/1596638.1596644.

Bachrach, Jonathan and Keith Playford (1999). D-Expressions: Lisp Power, Dylan
Style. URL: https://people.csail.mit.edu/jrb/Projects/dexprs.pdf.

Ball, W. W. Rouse (1914). Mathematical Recreations and Essays (6th Edition).
MacMillan & Co., Limited.

Ballantyne, Michael (2024). faster-minikanren. https : / / github . com /

michaelballantyne/faster-minikanren.
Ballantyne, Michael, Mitch Gamburg, and Jason Hemann (Aug. 2024). “Compiled,

Extensible, Multi-language DSLs (Functional Pearl).” In: Proc. ACM Program.
Lang. 8.ICFP. DOI: https://doi.org/10.1145/3674627.

Ballantyne, Michael, Alexis King, and Matthias Felleisen (Nov. 2020). “Macros for
domain-specific languages.” In: Proc. ACM Program. Lang. 4.OOPSLA. DOI:
10.1145/3428297.

Ballantyne, Michael, Rafaello Sanna, Jason Hemann, William E. Byrd, and Nada
Amin (2025). “Multi-stage relational programming.” In: Proc. ACM Program.
Lang. Vol. 9. PLDI. DOI: 10.1145/3729314.

Barrett, Langston, David Thrane Christiansen, and Samuel Gélineau (2020). “Pre-
dictable Macros for Hindley-Milner.” In: The Workshop on Type-Driven Develop-

145

https://www.cs.cmu.edu/~aldrich/FOOL09/allen.pdf
https://www.cs.cmu.edu/~aldrich/FOOL09/allen.pdf
https://doi.org/10.1145/3428290
https://doi.org/10.1145/3110274
https://doi.org/10.1145/2847538.2847543
https://doi.org/10.1145/3276484
https://doi.org/10.1145/1596638.1596644
https://people.csail.mit.edu/jrb/Projects/dexprs.pdf
https://github.com/michaelballantyne/faster-minikanren
https://github.com/michaelballantyne/faster-minikanren
https://doi.org/https://doi.org/10.1145/3674627
https://doi.org/10.1145/3428297
https://doi.org/10.1145/3729314

146 B I B L I O G R A P H Y

ment. TyDe ’20. URL: https://davidchristiansen.dk/pubs/tyde2020-
predictable-macros-abstract.pdf.

Barrett, Langston, David Thrane Christiansen, and Samuel Gélineau (2020). “Pre-
dictable Macros for Hindley-Milner.” In: Proc. Workshop on Type-Driven De-
velopment. URL: https : / / davidchristiansen . dk / pubs / tyde2020 -

predictable-macros-abstract.pdf.
Barringer, Howard, Yliès Falcone, Klaus Havelund, Giles Reger, and David Ryde-

heard (2012). “Quantified Event Automata: Towards Expressive and Efficient
Runtime Monitors.” In: Proc. Formal Methods, pp. 68–84. DOI: 10.1007/978-
3-642-32759-9_9.

Barzilay, Eli, Ryan Culpepper, and Matthew Flatt (2011). “Keeping it clean with
syntax parameters.” In: Proc. Workshop on Scheme and Functional Programming.
URL: https://www.schemeworkshop.org/2011/papers/Barzilay2011.
pdf.

Blinn, Andrew, Xiang Li, June Hyung Kim, and Cyrus Omar (Oct. 2024). “Stat-
ically Contextualizing Large Language Models with Typed Holes.” In: Proc.
ACM Program. Lang. 8.OOPSLA2. DOI: 10.1145/3689728.

Bocirnea, Sean and William J. Bowman (Oct. 2025). “Fast and Extensible Hybrid
Embeddings with Micros.” In: Proc. Workshop on Scheme and Functional
Programming. Scheme ’25. DOI: 10.1145/3759537.3762696.

Bünder, Hendrik and Herbert Kuchen (2020). “Towards Multi-editor Support
for Domain-Specific Languages Utilizing the Language Server Protocol.” In:
Model-Driven Engineering and Software Development. MODELSWARD 2019,
pp. 225–245. DOI: 10.1007/978-3-030-37873-8_10.

Burmako, Eugene (2013). “Scala macros: let our powers combine!: On how rich
syntax and static types work with metaprogramming.” In: Proc. Workshop on
Scala. Scala ’13. DOI: 10.1145/2489837.2489840.

Byrd, William E. (2009). “Relational programming in minikanren: techniques,
applications, and implementations.” PhD thesis. ISBN: 9781109504682.

Byrd, William E., Michael Ballantyne, Gregory Rosenblatt, and Matthew Might
(Aug. 2017). “A Unified Approach to Solving Seven Programming Problems
(Functional Pearl).” In: Proc. ACM Program. Lang. 1.ICFP. DOI: 10.1145/
3110252.

Byrd, William E., Eric Holk, and Daniel P. Friedman (2012). “miniKanren, Live
and Untagged: Quine Generation via Relational Interpreters (Programming
Pearl).” In: Proc. Workshop on Scheme and Functional Programming. Scheme
’12, pp. 8–29. DOI: 10.1145/2661103.2661105.

Chang, Stephen, Michael Ballantyne, Milo Turner, and William J. Bowman (Dec.
2019). “Dependent type systems as macros.” In: Proc. ACM Program. Lang.
4.POPL. DOI: 10.1145/3371071.

Chang, Stephen, Alex Knauth, and Ben Greenman (2017). “Type systems as
macros.” In: Proc. Principles of Programming Languages. POPL 2017, 694–
–705. ISBN: 9781450346603. DOI: 10.1145/3009837.3009886.

https://davidchristiansen.dk/pubs/tyde2020-predictable-macros-abstract.pdf
https://davidchristiansen.dk/pubs/tyde2020-predictable-macros-abstract.pdf
https://davidchristiansen.dk/pubs/tyde2020-predictable-macros-abstract.pdf
https://davidchristiansen.dk/pubs/tyde2020-predictable-macros-abstract.pdf
https://doi.org/10.1007/978-3-642-32759-9_9
https://doi.org/10.1007/978-3-642-32759-9_9
https://www.schemeworkshop.org/2011/papers/Barzilay2011.pdf
https://www.schemeworkshop.org/2011/papers/Barzilay2011.pdf
https://doi.org/10.1145/3689728
https://doi.org/10.1145/3759537.3762696
https://doi.org/10.1007/978-3-030-37873-8_10
https://doi.org/10.1145/2489837.2489840
https://doi.org/10.1145/3110252
https://doi.org/10.1145/3110252
https://doi.org/10.1145/2661103.2661105
https://doi.org/10.1145/3371071
https://doi.org/10.1145/3009837.3009886

B I B L I O G R A P H Y 147

Christiansen, David and Edwin Brady (2016). “Elaborator reflection: Extending
Idris in Idris.” In: Proc. International Conference on Functional Programming.
ICFP ’16, 284––297. DOI: 10.1145/2951913.2951932.

Claessen, Koen and Peter Ljunglöf (2001). “Typed Logical Variables in Haskell.”
In: Electronic Notes in Theoretical Computer Science 41.1, p. 37. DOI: 10.
1016/S1571-0661(05)80544-4.

Clément, Dominique, Janet Incerpi, and Gilles Kahn (1989). “CENTAUR: towards
a “software tool box” for programming environments.” In: International Work-
shop on Software Engineering Environments, pp. 287–304. DOI: 10.1007/3-
540-53452-0_51.

Culpepper, Ryan (Aug. 2012). “Fortifying macros.” In: Journal of Functional
Programming 22.4-5, pp. 439–476. DOI: 10.1017/s0956796812000275.

Culpepper, Ryan, Matthias Felleisen, Matthew Flatt, and Shriram Krishnamurthi
(2019). “From macros to DSLs: The evolution of Racket.” In: Proc. Summit on
Advances in Programming Languages. SNAPL 2019, 5:1–5:19. DOI: 10.4230/
LIPIcs.SNAPL.2019.5.

Delmonaco, Michael (2022). Ocular Patdown: A Racket Optics Library. URL:
https://github.com/quasarbright/ocular-patdown.

Dimoulas, Christos, Sam Tobin-Hochstadt, and Matthias Felleisen (2012). “Com-
plete Monitors for Behavioral Contracts.” In: Proc. European Symposium on
Programming, pp. 214–233. DOI: https://doi.org/10.1007/978-3-642-
28869-2_11.

Disney, Tim, Nathan Faubion, David Herman, and Cormac Flanagan (2014).
“Sweeten your JavaScript: Hygienic macros for ES5.” In: Proc. Symposium on
Dynamic Languages. DLS ’14, pp. 35–44. DOI: 10.1145/2661088.2661097.

Dybvig, R. Kent (2004). The guaranteed optimization clause of the macro-writer’s
bill of rights. Presented at Dan Friedman’s 60th birthday conference. URL:
https://www.youtube.com/watch?v=LIEX3tUliHw.

Elliott, Conal, Sigbjørn Finne, and Oege de Moor (2003). “Compiling embedded
languages.” In: Journal of Functional Programming 13.3, 455–481. DOI: 10.
1017/S0956796802004574.

Erdweg, Sebastian, Lennart C. L. Kats, Tillmann Rendel, Christian Kästner, Klaus
Ostermann, and Eelco Visser (2011a). “Growing a language environment with
editor libraries.” In: Proc. Generative Programming and Component Engineering.
GPCE ’11, pp. 167–176. DOI: 10.1145/2047862.2047891.

Erdweg, Sebastian, Tillmann Rendel, Christian Kästner, and Klaus Ostermann
(2011b). “SugarJ: library-based syntactic language extensibility.” In: Proc.
Object-Oriented Programming Systems, Languages & Applications. OOPSLA
’11, pp. 391–406. DOI: 10.1145/2048066.2048099.

Felleisen, Matthias (1985). Transliterating Prolog into Scheme. Tech. rep.
182. Indiana University. URL: https://legacy.cs.indiana.edu/ftp/
techreports/TR182.pdf.

https://doi.org/10.1145/2951913.2951932
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1016/S1571-0661(05)80544-4
https://doi.org/10.1007/3-540-53452-0_51
https://doi.org/10.1007/3-540-53452-0_51
https://doi.org/10.1017/s0956796812000275
https://doi.org/10.4230/LIPIcs.SNAPL.2019.5
https://doi.org/10.4230/LIPIcs.SNAPL.2019.5
https://github.com/quasarbright/ocular-patdown
https://doi.org/https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/2661088.2661097
https://www.youtube.com/watch?v=LIEX3tUliHw
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1017/S0956796802004574
https://doi.org/10.1145/2047862.2047891
https://doi.org/10.1145/2048066.2048099
https://legacy.cs.indiana.edu/ftp/techreports/TR182.pdf
https://legacy.cs.indiana.edu/ftp/techreports/TR182.pdf

148 B I B L I O G R A P H Y

Felleisen, Matthias (1990). “On the expressive power of programming languages.”
In: Proc. European Symposium on Programming. ESOP ’90, pp. 134–151. DOI:
10.1007/3-540-52592-0_60.

– (1991). “On the expressive power of programming languages.” In: Science of
Computer Programming 17.1-3, pp. 35–75. DOI: 10.1016/0167-6423(91)
90036-W.

Felleisen, Matthias, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi,
Eli Barzilay, Jay McCarthy, and Sam Tobin-Hochstadt (Feb. 2018). “A pro-
grammable programming language.” In: Communications of the ACM 61.3,
pp. 62–71. DOI: 10.1145/3127323.

Feltey, Daniel, Spencer P. Florence, Tim Knutson, Vincent St-Amour, Ryan Culpep-
per, Matthew Flatt, Robert Bruce Findler, and Matthias Felleisen (2016). “Lan-
guages the Racket way.” In: Language Workbench Challenge. URL: https:
/ / users . cs . northwestern . edu / ~robby / pubs / papers / lwc2016 -

ffkscfff.pdf.
Findler, Robert Bruce, John Clements, Cormac Flanagan, Matthew Flatt, Shriram

Krishnamurthi, Paul Steckler, and Matthias Felleisen (2002). “DrScheme: A
programming environment for Scheme.” In: Journal of Functional Programming
12.2, pp. 159–182. DOI: 10.1017/S0956796801004208.

Findler, Robert Bruce and Matthias Felleisen (2002). “Contracts for higher-order
functions.” In: Proc. International Conference on Functional Programming.
ICFP ’02, 48–59. DOI: 10.1145/581478.581484.

Fisher, David and Olin Shivers (Sept. 2008). “Building language towers with
Ziggurat.” In: Journal of Functional Programming 18.5/6, pp. 707–780. DOI:
10.1017/S0956796808006928.

Flatt, Matthew (2002). “Composable and compilable macros: you want it when?”
In: Proc. International Conference on Functional Programming. ICFP ’02,
pp. 72–83. DOI: 10.1145/581478.581486.

– (2016b). Binding as sets of scopes (extended version). URL: https://users.
cs.utah.edu/plt/scope-sets/.

– (2016a). “Binding as sets of scopes.” In: Proc. Principles of Programming
Languages. POPL ’16, pp. 705–717. DOI: 10.1145/2837614.2837620.

Flatt, Matthew, Ryan Culpepper, David Darais, and Robert Bruce Findler (Mar.
2012). “Macros that work together: compile-time bindings, partial expansion,
and definition contexts.” In: Journal of Functional Programming 22.2, pp. 181–
216. DOI: 10.1017/S0956796812000093.

Flatt, Matthew, Robert Bruce Findler, and Matthias Felleisen (2006). “Scheme
with classes, mixins, and traits.” In: Proc. Asian Conference on Programming
Languages and Systems. APLAS ’06, pp. 270–289. DOI: 10.1007/11924661_
17.

Flatt, Matthew and PLT (2010). Reference: Racket. Tech. rep. PLT-TR-2010-1.
https://racket-lang.org/tr1/. PLT Design Inc.

https://doi.org/10.1007/3-540-52592-0_60
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1145/3127323
https://users.cs.northwestern.edu/~robby/pubs/papers/lwc2016-ffkscfff.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/lwc2016-ffkscfff.pdf
https://users.cs.northwestern.edu/~robby/pubs/papers/lwc2016-ffkscfff.pdf
https://doi.org/10.1017/S0956796801004208
https://doi.org/10.1145/581478.581484
https://doi.org/10.1017/S0956796808006928
https://doi.org/10.1145/581478.581486
https://users.cs.utah.edu/plt/scope-sets/
https://users.cs.utah.edu/plt/scope-sets/
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1007/11924661_17
https://doi.org/10.1007/11924661_17
https://racket-lang.org/tr1/

B I B L I O G R A P H Y 149

Flatt, Matthew et al. (Oct. 2023). “Rhombus: A New Spin on Macros without All
the Parentheses.” In: Proc. ACM Program. Lang. 7.OOPSLA2. DOI: 10.1145/
3622818.

Ford, Bryan (2004). “Parsing expression grammars: a recognition-based syntac-
tic foundation.” In: Proc. Principles of Programming Languages. POPL ’04,
pp. 111–122. DOI: 10.1145/964001.964011.

Foster, J. Nathan, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt (May 2007). “Combinators for Bidirectional Tree Transfor-
mations: A Linguistic Approach to the View-Update Problem.” In: ACM Trans.
Program. Lang. Syst. 29.3, 17––es. DOI: 10.1145/1232420.1232424.

Friedman, Daniel P., William E. Byrd, Oleg Kiselyov, and Jason Hemann
(Mar. 2018). The Reasoned Schemer, Second Edition. The MIT Press. ISBN:
9780262535519.

Gibbons, Jeremy and Nicolas Wu (2014). “Folding domain-specific languages:
Deep and shallow embeddings (functional Pearl).” In: Proc. International Confer-
ence on Functional Programming. ICFP ’14, 339–347. DOI: 10.1145/2628136.
2628138.

Gierczak, Olek, Lucy Menon, Christos Dimoulas, and Amal Ahmed (Apr. 2024).
“Gradually Typed Languages Should Be Vigilant!” In: Proc. ACM Program.
Lang. 8.OOPSLA1. DOI: 10.1145/3649842.

Griffin, Timothy (1988). “Notational definition—a formal account.” In: Proc. Sym-
posium on Logic in Computer Science. LICS ’88, pp. 372–383. DOI: 10.1109/
LICS.1988.5134.

Grimm, Robert (2004). Practical Packrat Parsing. Tech. rep. TR2004-854. New
York University.

Harel, David (1987). “Statecharts: a visual formalism for complex systems.” In:
Science of Computer Programming 8.3, pp. 231–274. DOI: 10.1016/0167-
6423(87)90035-9.

Hasu, Tero and Matthew Flatt (May 2016). “Source-to-source compilation via
submodules.” In: Proc. European Lisp Symposium. ELS ’16, pp. 57–64. URL:
https://www.european-lisp-symposium.org/static/proceedings/

2016.pdf.
Havelund, Klaus, Giles Reger, Daniel Thoma, and Eugen Zălinescu (2018). “Moni-

toring Events that Carry Data.” In: Lectures on Runtime Verification: Introductory
and Advanced Topics, pp. 61–102. DOI: 10.1007/978-3-319-75632-5_3.

Herman, David and Mitchell Wand (2008). “A theory of hygienic macros.” In:
Programming Languages and Systems. ESOP ’15, pp. 48–62. DOI: 10.1007/
978-3-540-78739-6_4.

Hickey, Rich (2008). “The Clojure programming language.” In: Proc. Symposium
on Dynamic Languages. DLS ’08. DOI: 10.1145/1408681.1408682.

Hinze, Ralf (1998). “Prological Features in a Functional Setting Axioms and
Implementation.” In: Fuji International Symposium on Functional and Logic

https://doi.org/10.1145/3622818
https://doi.org/10.1145/3622818
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1145/3649842
https://doi.org/10.1109/LICS.1988.5134
https://doi.org/10.1109/LICS.1988.5134
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.1016/0167-6423(87)90035-9
https://www.european-lisp-symposium.org/static/proceedings/2016.pdf
https://www.european-lisp-symposium.org/static/proceedings/2016.pdf
https://doi.org/10.1007/978-3-319-75632-5_3
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1007/978-3-540-78739-6_4
https://doi.org/10.1145/1408681.1408682

150 B I B L I O G R A P H Y

Programming. FLOPS ’98, pp. 98–122. URL: https://www.cs.ox.ac.uk/
ralf.hinze/publications/FLOPS98.ps.gz.

Kasivajhula, Siddhartha (2021). Qi: An Embeddable Flow-Oriented Language.
URL: https://docs.racket-lang.org/qi.

Kats, Lennart C. L. and Eelco Visser (2010). “The Spoofax language workbench:
rules for declarative specification of languages and IDEs.” In: Proc. Object-
Oriented Programming Systems, Languages & Applications. OOPSLA ’10,
pp. 444–463. DOI: 10.1145/1869459.1869497.

Keep, Andrew W, Michael D Adams, Lindsey Kuper, William E Byrd, and Daniel
P Friedman (2009). “A pattern matcher for miniKanren or how to get into trouble
with CPS macros.” In: Proc. Workshop on Scheme and Functional Programming.
Scheme ’09, pp. 37–45. URL: https://digitalcommons.calpoly.edu/
csse_fac/83.

Keep, Andrew W. and R. Kent Dybvig (2013). “A nanopass framework for commer-
cial compiler development.” In: Proc. International Conference on Functional
Programming. ICFP ’13, 343––350. DOI: 10.1145/2500365.2500618.

Kessenich, John, Dave Baldwin, and Randi Roost (2023). The OpenGL Shad-
ing Language. Ed. by Graeme Leese. Broadcom. URL: https://registry.
khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf.

Keuchel, Steven, Stephanie Weirich, and Tom Schrijvers (2016). “Needle & Knot:
binder boilerplate tied up.” In: Programming Languages and Systems. ESOP
’16, pp. 419–445. DOI: 10.1007/978-3-662-49498-1_17.

King, Alexis (2017). The Hackett Programming Language. URL: https://lexi-
lambda.github.io/hackett/.

Kiselyov, Oleg, William E. Byrd, Daniel P. Friedman, and Chung-chieh Shan
(2008). “Pure, declarative, and constructive arithmetic relations (declarative
pearl).” In: Proc. International Symposium on Functional and Logic Program-
ming, pp. 64–80. DOI: 10.1007/978-3-540-78969-7_7.

Kohlbecker, E. E. and M. Wand (1987). “Macro-by-example: Deriving syntactic
transformations from their specifications.” In: Proc. Principles of Programming
Languages. POPL ’87, 77–84. DOI: 10.1145/41625.41632.

Konat, Gabriël, Lennart Kats, Guido Wachsmuth, and Eelco Visser (2013). “Declar-
ative name binding and scope rules.” In: Software Language Engineering. SLE
’13, pp. 311–331. DOI: 10.1007/978-3-642-36089-3_18.

Kosarev, Dmitrii and Dmitry Boulytchev (2018). “Typed Embedding of a Relational
Language in OCaml.” In: Proc. ML Family Workshop. ML/OCAML 2016. DOI:
10.4204/EPTCS.285.1.

Kowalski, Robert (1979). Logic for Problem Solving. Ediciones Díaz de Santos.
ISBN: 0444003657.

Krishnamurthi, Shriram (2001). “Linguistic Reuse.” PhD thesis. Rice University.
Landin, Peter J (1964). “The mechanical evaluation of expressions.” In: The com-

puter journal 6.4, pp. 308–320.

https://www.cs.ox.ac.uk/ralf.hinze/publications/FLOPS98.ps.gz
https://www.cs.ox.ac.uk/ralf.hinze/publications/FLOPS98.ps.gz
https://docs.racket-lang.org/qi
https://doi.org/10.1145/1869459.1869497
https://digitalcommons.calpoly.edu/csse_fac/83
https://digitalcommons.calpoly.edu/csse_fac/83
https://doi.org/10.1145/2500365.2500618
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf
https://doi.org/10.1007/978-3-662-49498-1_17
https://lexi-lambda.github.io/hackett/
https://lexi-lambda.github.io/hackett/
https://doi.org/10.1007/978-3-540-78969-7_7
https://doi.org/10.1145/41625.41632
https://doi.org/10.1007/978-3-642-36089-3_18
https://doi.org/10.4204/EPTCS.285.1

B I B L I O G R A P H Y 151

Lichtenstein, Orna, Amir Pnueli, and Lenore Zuck (1985). “The glory of the past.”
In: Proc. Logics of Programs, pp. 196–218. DOI: 10.1007/3-540-15648-
8_16.

Lozov, Peter and Dmitry Boulytchev (2021). “Efficient fair conjunction for
structurally-recursive relations.” In: Proc. Partial Evaluation and Program
Manipulation. PEPM 2021. DOI: 10.1145/3441296.3441397.

Mainland, Geoffrey (2007). “Why it’s nice to be quoted: Quasiquoting for Haskell.”
In: Proc. Haskell Workshop. Haskell ’07, 73–82. DOI: 10.1145/1291201.
1291211.

Marriott, Kim and Harald Søndergaard (1989). “On Prolog and the occur check
problem.” In: ACM SIGPLAN Notices 24.5, pp. 76–82. DOI: 10.1145/66068.
66075.

Martens, Chris, Robert J. Simmons, and Michael Arntzenius (Jan. 2025). “Finite-
Choice Logic Programming.” In: Proc. ACM Program. Lang. 9.POPL. DOI:
10.1145/3704849.

Matthews, Jacob and Robert Bruce Findler (2007). “Operational Semantics for
Multi-Language Programs.” In: Proc. Principles of Programming Languages.
POPL ’07, 3––10. DOI: 10.1145/1190216.1190220.

Mernik, Marjan, Jan Heering, and Anthony M. Sloane (2005). “When and How
to Develop Domain-Specific Languages.” In: ACM Computing Surveys 37.4,
316–344. DOI: 10.1145/1118890.1118892.

Meunier, Philippe and Daniel Silva (2003). “From Python to PLT Scheme.” In:
Proc. Workshop on Scheme and Functional Programming, pp. 24–29.

Microsoft Corporation (2022). Language Server Protocol Specification v3.17.
URL: https://microsoft.github.io/language- server- protocol/
specifications/lsp/3.17/.

Moura, Leonardo de and Sebastian Ullrich (2021). “The Lean 4 Theorem Prover
and Programming Language.” In: Automated Deduction – CADE 28. Ed. by
André Platzer and Geoff Sutcliffe, pp. 625–635.

Moy, Cameron and Matthias Felleisen (2023). “Trace contracts.” In: Journal of
Functional Programming 33.e14. DOI: 10.1017/S0956796823000096.

Moy, Cameron, Ryan Jung, and Matthias Felleisen (2025). “Contract Systems Need
Domain-Specific Notations.” In: Proc. European Conference on Object-Oriented
Programming, 42:1–42:24. DOI: 10.4230/LIPIcs.ECOOP.2025.42.

Moy, Cameron and Daniel Patterson (Aug. 2025). Teaching Software Specification
(Experience Report). DOI: 10.1145/3747533.

NVIDIA (2007). CUDA Toolkit. URL: https://developer.nvidia.com/cuda-
toolkit.

Najd, Shayan, Sam Lindley, Josef Svenningsson, and Philip Wadler (2016). “Ev-
erything old is new again: Quoted domain-specific languages.” In: Proc. Partial
Evaluation and Program Manipulation. PEPM ’16, 25–36. DOI: 10.1145/
2847538.2847541.

https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1145/3441296.3441397
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/1291201.1291211
https://doi.org/10.1145/66068.66075
https://doi.org/10.1145/66068.66075
https://doi.org/10.1145/3704849
https://doi.org/10.1145/1190216.1190220
https://doi.org/10.1145/1118890.1118892
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/
https://microsoft.github.io/language-server-protocol/specifications/lsp/3.17/
https://doi.org/10.1017/S0956796823000096
https://doi.org/10.4230/LIPIcs.ECOOP.2025.42
https://doi.org/10.1145/3747533
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://doi.org/10.1145/2847538.2847541
https://doi.org/10.1145/2847538.2847541

152 B I B L I O G R A P H Y

Neron, Pierre, Andrew Tolmach, Eelco Visser, and Guido Wachsmuth (2015). “A
theory of name resolution.” In: Programming Languages and Systems. ESOP
’15, pp. 205–231. DOI: 10.1007/978-3-662-46669-8_9.

Omar, Cyrus and Jonathan Aldrich (2018). “Reasonably programmable literal
notation.” In: Proc. ACM Program. Lang. 2.ICFP. DOI: 10.1145/3236801.

Omar, Cyrus, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh (2021). “Filling Typed Holes with Live GUIs.” In: Proc. Programming
Language Design and Implementation. PLDI ’21, 511––525. DOI: 10.1145/
3453483.3454059.

Pacak, André, Sebastian Erdweg, and Tamás Szabó (Nov. 2020). “A systematic
approach to deriving incremental type checkers.” In: Proc. ACM Program. Lang.
4.OOPSLA. DOI: 10.1145/3428195.

Patterson, Daniel Baker (Aug. 2022). “Interoperability through Realizability: Ex-
pressing High-Level Abstractions Using Low-Level Code.” PhD thesis. Boston,
Massachusetts: Northeastern University. DOI: 10.17760/D20467221.

Patterson, Daniel, Noble Mushtak, Andrew Wagner, and Amal Ahmed (2022).
“Semantic soundness for language interoperability.” In: Proc. Programming
Language Design and Implementation. PLDI ’22, 609–624. DOI: 10.1145/
3519939.3523703.

Patterson, Daniel, Jamie Perconti, Christos Dimoulas, and Amal Ahmed (2017).
“FunTAL: reasonably mixing a functional language with assembly.” In: Proc.
Programming Language Design and Implementation. PLDI ’17, pp. 495–509.
DOI: 10.1145/3062341.3062347.

Pech, Vaclav, Alex Shatalin, and Markus Voelter (2013). “JetBrains MPS as a tool
for extending Java.” In: Proc. Principles and Practices of Programming on the
Java Platform. PPPJ ’13, 165–168. DOI: 10.1145/2500828.2500846.

Pelsmaeker, Daniel A. A., Hendrik van Antwerpen, Casper Bach Poulsen,
and Eelco Visser (Apr. 2022). “Language-Parametric Static Semantic
Code Completion.” In: Proc. ACM Program. Lang. 6.OOPSLA1. DOI:
pelsmaeker2022languageparametric.

Perconti, James T. and Amal Ahmed (2014). “Verifying an Open Compiler Using
Multi-language Semantics.” In: European Symposium on Programming Lan-
guages and Systems. ESOP ’14, pp. 128–148. DOI: 10.1007/978-3-642-
54833-8_8.

Piterkin, Andrey and Luke Jianu (2025). Logical Student Language V2. URL:
https://github.com/AndreyPiterkin/lsl-v2.

Politz, Joe Gibbs, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel
Patterson, Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi (2013).
“Python: The full monty.” In: Proc. Object-Oriented Programming Systems, Lan-
guages & Applications. OOPSLA ’13, pp. 217–232. DOI: 10.1145/2509136.
2509536.

https://doi.org/10.1007/978-3-662-46669-8_9
https://doi.org/10.1145/3236801
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3453483.3454059
https://doi.org/10.1145/3428195
https://doi.org/10.17760/D20467221
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3519939.3523703
https://doi.org/10.1145/3062341.3062347
https://doi.org/10.1145/2500828.2500846
https://doi.org/pelsmaeker2022languageparametric
https://doi.org/10.1007/978-3-642-54833-8_8
https://doi.org/10.1007/978-3-642-54833-8_8
https://github.com/AndreyPiterkin/lsl-v2
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/2509136.2509536

B I B L I O G R A P H Y 153

Pombrio, Justin, Shriram Krishnamurthi, and Mitchell Wand (Aug. 2017). “Infer-
ring scope through syntactic sugar.” In: Proc. ACM Program. Lang. 1.ICFP. DOI:
10.1145/3110288.

Prakash, Ari and Zack Eisbach (2025). miniDusa. URL: https://github.com/
ariscript/minidusa.

Rafkind, Jon and Matthew Flatt (2012). “Honu: Syntactic extension for algebraic
notation through enforestation.” In: Proc. Generative Programming and Compo-
nent Engineering. GPCE ’12, pp. 122–131. DOI: 10.1145/2371401.2371420.

Ramos, Pedro Palma and António Menezes Leitão (2014). “Implementing Python
for DrRacket.” In: Proc. Symposium on Languages, Applications and Technolo-
gies, pp. 127–141. DOI: 10.4230/OASIcs.SLATE.2014.127.

Rompf, Tiark, Nada Amin, Adriaan Moors, Philipp Haller, and Martin Odersky
(2012). “Scala-Virtualized: Linguistic reuse for deep embeddings.” In: Higher-
Order and Symbolic Computation 25.1, pp. 165–207. DOI: 10.1007/s10990-
013-9096-9.

Rozplokhas, Dmitry and Dmitry Boulytchev (2021). “A Complexity Study for
Interleaving Search.” In: Proc. miniKanren and Relational Programming Work-
shop. miniKanren ’21. URL: http://minikanren.org/workshop/2021/
minikanren-2021-final7.pdf.

Sampson, Adrian, Kathryn S. McKinley, and Todd Mytkowicz (Oct. 2017). “Static
stages for heterogeneous programming.” In: Proc. ACM Program. Lang. 1.OOP-
SLA. DOI: 10.1145/3133895.

Sarkar, DiPanwita, Oscar Waddell, and R. Kent Dybvig (2005). “Educational
Pearl: A Nanopass framework for compiler education.” In: Journal of Functional
Programming 15.5, 653––667. DOI: 10.1017/S0956796805005605.

Savaton, Guillaume (2021). Tiny-HDL. URL: https : / / github . com /

aumouvantsillage/Tiny-HDL-Racket.
Scherr, Maximilian and Shigeru Chiba (2014). “Implicit Staging of EDSL Expres-

sions: A Bridge between Shallow and Deep Embedding.” In: Proc. European
Conference on Object-Oriented Programming. ECOOP ’14, pp. 385–410. DOI:
10.1007/978-3-662-44202-9_16.

Sewell, Peter, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša (2007). “Ott: effective tool support for
the working semanticist.” In: Proc. International Conference on Functional
Programming. ICFP ’07, pp. 1–12. DOI: 10.1145/1291151.1291155.

Shaikhha, Amir, Vojin Jovanovic, and Christoph Koch (Aug. 2018). “A Compiler-
Compiler for DSL Embedding.” In: arXiv: 1808.01344.

Søndergaard, Harald (1986). “An application of abstract interpretation of logic pro-
grams: Occur check reduction.” In: Proc. European Symposium on Programming.
ESOP ’86, pp. 327–338. DOI: 10.1007/3-540-16442-1_25.

Souza Amorim, Luis Eduardo de and Eelco Visser (2020). “Multi-purpose Syntax
Definition with SDF3.” In: Proc. Software Engineering and Formal Methods,
pp. 1–23. DOI: 10.1007/978-3-030-58768-0_1.

https://doi.org/10.1145/3110288
https://github.com/ariscript/minidusa
https://github.com/ariscript/minidusa
https://doi.org/10.1145/2371401.2371420
https://doi.org/10.4230/OASIcs.SLATE.2014.127
https://doi.org/10.1007/s10990-013-9096-9
https://doi.org/10.1007/s10990-013-9096-9
http://minikanren.org/workshop/2021/minikanren-2021-final7.pdf
http://minikanren.org/workshop/2021/minikanren-2021-final7.pdf
https://doi.org/10.1145/3133895
https://doi.org/10.1017/S0956796805005605
https://github.com/aumouvantsillage/Tiny-HDL-Racket
https://github.com/aumouvantsillage/Tiny-HDL-Racket
https://doi.org/10.1007/978-3-662-44202-9_16
https://doi.org/10.1145/1291151.1291155
https://arxiv.org/abs/1808.01344
https://doi.org/10.1007/3-540-16442-1_25
https://doi.org/10.1007/978-3-030-58768-0_1

154 B I B L I O G R A P H Y

Soy, Suzanne (2017). Type expanders for Typed Racket. URL: https://github.
com/jsmaniac/type-expander.

Stansifer, Paul and Mitchell Wand (2014). “Romeo: a system for more flexible
binding-safe programming.” In: Proc. International Conference on Functional
Programming. ICFP ’14, 53–65. DOI: 10.1145/2628136.2628162.

Steele, Guy Lewis (1978). Rabbit: A compiler for Scheme. Tech. rep. MIT Artificial
Intelligence Laboratory. URL: http://hdl.handle.net/1721.1/6913.

Svenningsson, Josef and Emil Axelsson (2015). “Combining deep and shallow
embedding of domain-specific languages.” In: Computer Languages, Systems
and Structures 44.Part B, pp. 143–165. DOI: 10.1016/j.cl.2015.07.003.

Taha, Walid (1999). “Multi-Stage Programming: Its Theory and Applications.”
PhD thesis.

Thiemann, Peter and Matthias Neubauer (2008). “Macros for context-free gram-
mars.” In: Proc. Principles and Practice of Declarative Programming. PPDP
’08, pp. 120–130. DOI: 10.1145/1389449.1389465.

Tobin-Hochstadt, Sam (2011). “Extensible pattern matching in an extensible lan-
guage.” In: eprint: 1106.2578v1.

Tratt, Laurence (2005). The Converge programming language. Tech. rep. TR-05-
01. Department of Computer Science, King’s College London. URL: https:
//nms.kcl.ac.uk/informatics/techreports/papers/TR-05-01.pdf.

Ullrich, Sebastian Andreas (2023). “An Extensible Theorem Proving Frontend.”
PhD thesis. Karlsruher Institut für Technologie (KIT). DOI: 10.5445/IR/
1000161074.

Van Roy, Peter (1994). “1983–1993: The wonder years of sequential Prolog imple-
mentation.” In: The Journal of Logic Programming 19-20, pp. 385–441. DOI:
10.1016/0743-1066(94)90031-0.

Van Wyk, Eric, Derek Bodin, Jimin Gao, and Lijesh Krishnan (2008). “Silver:
An extensible attribute grammar system.” In: Proc. Workshop on Language
Descriptions, Tools, and Applications. LDTA ’07, pp. 103–116. DOI: 10.1016/
j.entcs.2008.03.047.

Verbitskaia, Ekaterina, Daniil Berezun, and Dmitry Boulytchev (2020). “An Empir-
ical Study of Partial Deduction for miniKanren.” In: Proc. miniKanren and Rela-
tional Programming Workshop. miniKanren ’20. URL: http://minikanren.
org/workshop/2020/minikanren-2020-paper2.pdf.

Verbitskaia, Ekaterina, Igor Engel, and Daniil Berezun (2023). “Semi-Automated
Direction-Driven Functional Conversion.” In: Proc. miniKanren and Relational
Programming Workshop. miniKanren ’23. URL: http://minikanren.org/
workshop/2023/minikanren23-final2.pdf.

Voelter, Markus and Sascha Lisson (2014). “Supporting Diverse Notations in MPS’
Projectional Editor.” In: Proc. International Workshop on The Globalization of
Modeling Languages. GEMOC 2014, pp. 7–16. URL: http://ceur-ws.org/
Vol-1236/paper-03.pdf.

https://github.com/jsmaniac/type-expander
https://github.com/jsmaniac/type-expander
https://doi.org/10.1145/2628136.2628162
http://hdl.handle.net/1721.1/6913
https://doi.org/10.1016/j.cl.2015.07.003
https://doi.org/10.1145/1389449.1389465
1106.2578v1
https://nms.kcl.ac.uk/informatics/techreports/papers/TR-05-01.pdf
https://nms.kcl.ac.uk/informatics/techreports/papers/TR-05-01.pdf
https://doi.org/10.5445/IR/1000161074
https://doi.org/10.5445/IR/1000161074
https://doi.org/10.1016/0743-1066(94)90031-0
https://doi.org/10.1016/j.entcs.2008.03.047
https://doi.org/10.1016/j.entcs.2008.03.047
http://minikanren.org/workshop/2020/minikanren-2020-paper2.pdf
http://minikanren.org/workshop/2020/minikanren-2020-paper2.pdf
http://minikanren.org/workshop/2023/minikanren23-final2.pdf
http://minikanren.org/workshop/2023/minikanren23-final2.pdf
http://ceur-ws.org/Vol-1236/paper-03.pdf
http://ceur-ws.org/Vol-1236/paper-03.pdf

B I B L I O G R A P H Y 155

Walia, Rajan, Chung-chieh Shan, and Sam Tobin-Hochstadt (2021). Sham: A DSL
for Fast DSLs. arXiv: 2005.09028v2 [cs.PL].

Wand, Mitchell (1984). “A semantic prototyping system.” In: Proc. Symposium on
Compiler Construction, 213–221. DOI: 10.1145/502874.502895.

Ward, Martin P (1994). “Language-oriented programming.” In: Software Concepts
and Tools 15.4, pp. 147–161. DOI: 10.1007/978-1-4302-2390-0-12.

Weirich, Stephanie, Brent A. Yorgey, and Tim Sheard (2011). “Binders Unbound.”
In: Proc. International Conference on Functional Programming. ICFP ’11,
pp. 333–345. DOI: 10.1145/2034773.2034818.

Weisenburger, Pascal, Johannes Wirth, and Guido Salvaneschi (Sept. 2020). “A
Survey of Multitier Programming.” In: ACM Comput. Surv. 53.4. DOI: 10.1145/
3397495.

Wiersdorf, Ashton, Stephen Chang, Matthias Felleisen, and Ben Greenman (2024).
“Type tailoring.” In: Proc. European Conference on Object-Oriented Program-
ming. DOI: 10.4230/LIPIcs.ECOOP.2024.44.

de Bruijn, Nicolaas Govert (1991). “Telescopic Mappings in Typed Lambda-
Calculus.” In: Information and Computation 91.2, pp. 189–204. DOI: 10.1016/
0890-5401(91)90066-B.

Šinkarovs, Artjoms and Jesper Cockx (2021). Choosing is Losing: How to combine
the benefits of shallow and deep embeddings through reflection. arXiv: 2105.
10819.

https://arxiv.org/abs/2005.09028v2
https://doi.org/10.1145/502874.502895
https://doi.org/10.1007/978-1-4302-2390-0-12
https://doi.org/10.1145/2034773.2034818
https://doi.org/10.1145/3397495
https://doi.org/10.1145/3397495
https://doi.org/10.4230/LIPIcs.ECOOP.2024.44
https://doi.org/10.1016/0890-5401(91)90066-B
https://doi.org/10.1016/0890-5401(91)90066-B
https://arxiv.org/abs/2105.10819
https://arxiv.org/abs/2105.10819

A
S Y N TA X - S P E C D O C U M E N TAT I O N

This appendix contains the documentation for the syntax-spec-v3 Racket pack-
age which represents the most recent syntax-spec release at the time of writ-
ing. It includes a series of tutorials (Appendix A.1) and a reference manual
(Appendix A.2). The documentation is also available online at https://docs.
racket-lang.org/syntax-spec-v3/index.html. A more recent version of
the system may be available at https://github.com/michaelballantyne/
syntax-spec.

Michael Ballantyne ămichael.ballantyne@gmail.comą Michael Delmonaco
ămdelmonacochs@gmail.comą

This package provides a metalanguage for creating hosted DSLs. Hosted DSLs
extend the syntax of Racket with their own grammar and have their own static
semantics and compilers.

The metalanguage allows programmers to declare a DSL’s grammar, binding rules,
and integration points with Racket. Under the hood it produces a macro expander
for the DSL that parses, checks name bindings, expands DSL macros, and produces
syntax in the DSL’s core language for compilation.

You can implement conventional macros that do all these same things, but it can
take a lot of manual effort and a deep knowledge of Racket’s syntax API.

You might find the metalanguage useful when you both:

• want to perform static analysis or optimizing compilation

• you want your DSL to be macro-extensible

157

https://docs.racket-lang.org/syntax-spec-v3/index.html
https://docs.racket-lang.org/syntax-spec-v3/index.html
https://github.com/michaelballantyne/syntax-spec
https://github.com/michaelballantyne/syntax-spec
mailto:michael.ballantyne@gmail.com
mailto:mdelmonacochs@gmail.com

158 S Y N TA X - S P E C D O C U M E N TAT I O N

A.1 T U T O R I A L

The tutorial is broken down into illustrative examples:

A.1.1 Basic Tutorial: State Machine Language

This guide demonstrates use of syntax-spec via the case study of constructing a
DSL for structuring code as state machines.

We will:

• Define the syntax (§1.1.1 “Grammar”)

• Add binding rules (§1.1.2 “Binding”)

• Integrate Racket subexpressions (§1.1.3 “Integrating Racket Subexpres-
sions”)

• Compile to Racket code (§1.1.4 “Compilation”)

• Allow macros to extend the language (§1.1.5 “Macros”)

Here’s what using the DSL to define a controller for a vending machine looks like:

(define vending-machine

(machine

#:initial idle

(state idle

(on-enter (displayln "pay a dollar"))

(on (dollar)

(goto paid))

(on (select-item item)

(displayln "you need to pay before selecting an

item")

(goto idle)))

(state paid

(on-enter (displayln "select an item"))

(on (select-item item)

(displayln (format "dispensing ~a" item))

(goto idle)))))

The vending machine has two states: idle and paid. It reacts to two kinds of external
events: a dollar being inserted, and an item being selected for purchase.

A.1 T U T O R I A L 159

The machine declaration acts as a class. Racket code interacts with the machine by
constructing an instance and calling methods corresponding to machine transitions
such as dollar. The get-state method returns a symbol representing the current
state.

Within the machine, Racket code can be run when certain states are entered or
certain transitions occur. Within transitions, these actions can reference arguments
to the transition event, such as item in the select-item event.

A.1.1.1 Grammar

The essential parts of a DSL implementation in syntax-spec are a specification
of the DSL’s syntax and a compiler that transforms DSL syntax to Racket. The
syntax is specified in terms of nonterminals with associated binding rules. We’ll
introduce binding rules later in the tutorial. Host interface macros tie together the
specification and the DSL compiler producing a Racket macro that forms the entry
point to the language implementation.

Our initial specification with syntax-spec supplies the grammar:

#lang racket

(require syntax-spec-v3 (for-syntax syntax/parse racket/list))

(syntax-spec

(host-interface/expression

(machine #:initial initial-state:id s:state-spec ...)

(error 'machine "compiler not yet implemented"))

(nonterminal state-spec

(state name:id transitions:transition-spec ...)

(state name:id

((~datum on-enter) body:action-spec ...+)

transitions:transition-spec ...))

(nonterminal transition-spec

(on (event-name:id arg:id ...)

action:action-spec

...

((~datum goto) next-state:id)))

(nonterminal action-spec

160 S Y N TA X - S P E C D O C U M E N TAT I O N

((~datum displayln) x:id)))

The syntax-spec form is the entry-point into the metalanguage. It must be used
at the top-level of a module. In the example above, the language definition contains
two kinds of definitions, for host interface macros and nonterminals.

The host-interface/expression form is used to define host interface macros
that extend the language of Racket expressions. Here, it defines the machine syntax
for creating a state machine implemented as a Racket class.

The first part of the host interface definition specifies the syntax of the host interface
macro, beginning with the name of the form: machine. The remainder of the
machine form’s syntax specification describes the literal elements of the syntax
and its subexpression positions. Literal elements include keywords like #:initial.
A colon-separated name like s:state-spec indicates a subexpression position,
where the first portion is the spec variable used to name the position and the latter
portion is a reference to a nonterminal or binding class indicating the type of syntax
that may appear in the subexpression.

The remainder of the host interface declaration is compile-time Racket code.
Once the DSL syntax is checked and macro-expanded according to the syntax
specification, this compile-time code is responsible for compiling from the DSL to
Racket. For now it’s a stub.

A.1.1.2 Binding

Consider this program:

(machine

#:initial red

(state red

(on (event x)

(goto green))

(on (event x)

(goto red))))

Our first transition is to green, but there is no green state. This should result in an
unbound variable error.

However, let’s say our compiler translates (goto green) to (set! state

'green) and doesn’t produce any identifiers for green. Would we get an unbound
reference error for green? No! We’d just have strange behavior at runtime, or
maybe a runtime error, depending on the compiler.

A.1 T U T O R I A L 161

We could adjust our compiler to check for unbound state references, but syntax-
spec can do it for us. syntax-spec allows us to declare the binding and scoping
rules for our language, and bindings and references will be checked before your
compiler is even invoked, so your compiler can assume the program is not only
grammatically correct, but also well-bound.

There are also several other benefits that we get by providing binding rules. We
can use symbol tables to associate information with identifiers, we can allow our
languages to have hygienic macros, we can compute the free identifiers of an
expression, and many other identifier-related operations. We’ll get more into these
details later, but the point is you get a lot for free by declaring binding rules. This
is why you should be excited!

Simple binding

First, let’s declare that the arguments to an action are in scope in the guard expres-
sion:

(syntax-spec

(binding-class event-var)

...

(nonterminal transition-spec

(on (event-name:id arg:event-var ...)

action:action-spec

...

((~datum goto) next-state:id))

#:binding (scope (bind arg) ... action ...))

(nonterminal action-spec

((~datum displayln) x:event-var)))

We added a binding class, event-var, for an event’s argument names. We also
added a #:binding declaration to transition actions to declare that the args are
bound in the action expressions and this binding introduces a new scope.

These simple binding rules behave like let:

(syntax-spec

(binding-class my-var)

(nonterminal my-expr

(my-let ([x:my-var e:my-expr] ...) body:my-expr)

#:binding [e ... (scope (bind x) ... body)]

162 S Y N TA X - S P E C D O C U M E N TAT I O N

x:my-var

n:number))

We could’ve just written (scope (bind x) ... body). syntax-spec will auto-
matically treat e as a reference position outside of the new scope. That’s why we
don’t have to mention event-name in the binding rules for transitions. Addition-
ally, for action-spec expressions, there is an implicit #:binding rule generated
that treats x as a reference position.

Notice that there are ellipses in the binding spec corresponding to the ellipses
in the syntax spec. Like with syntax patterns and syntax templates, ellipses al-
low us to control the binding structure of syntax with sequences like [x:my-var
e:my-expr]

All spec references in a binding spec must have the same depth as their syntax
spec counterparts. This is stricter than syntax templates, where it is possible for
a template variable to occur with greater ellipsis depth than its associated pattern
variable.

Separate scope and binding forms

Now let’s add binding rules for state names. We can’t just use scope and bind

since the binding of the state name comes from the state-spec nonterminal, and
those bindings need to be in scope throughout the entire machine form. To use
bind, we need to be able to refer to the name being bound directly. For this kind
of binding structure, we use export to export bindings from the state-spec

nonterminal and import to import those bindings into a scope in the machine host
interface:

(binding-class state-name)

(host-interface/expression

(machine #:initial initial-state:state-name s:state-spec ...)

#:binding (scope (import s) ... initial-state)

(error 'machine "compiler not yet implemented"))

(nonterminal/exporting state-spec

(state name:state-name

((~datum on-enter) body:action-spec ...+)

transition:transition-spec ...)

#:binding (export name)

(state name:state-name transition:transition-spec ...)

#:binding (export name))

A.1 T U T O R I A L 163

(nonterminal transition-spec

(on (event-name:id arg:event-var ...)

action:action-spec

...

((~datum goto) next-state:state-name))

#:binding (scope (bind arg) ... action ...))

We use an exporting nonterminal for state-spec, which allows us to use the
export binding rule. This binds name in transition and the other state-spec
forms in the body of the machine, like define in a class body or a block form.

Similar to bind for a variable, we use import to declare that an exporting nonter-
minal’s bindings should be in scope for the initial-state in the machine.

Nested binding

There is another type of binding rule that doesn’t fit into our state machine language,
but you might need it when creating a different language. This is nested binding
and behaves like let*, where you have a sequence of variables being defined and
each one is in scope for the subsequent definitions (but not previous ones). Here is
an example:

(syntax-spec

(binding-class my-var)

(nonterminal my-expr

(my-let* (b:binding-pair ...) body:my-expr)

#:binding (nest b ... body)

n:number

x:my-var)

(nonterminal/nesting binding-pair (nested)

[x:my-var e:my-expr]

#:binding (scope (bind x) nested)))

We create a nesting nonterminal for a binding pair, which has nested, which is
like an argument for the nonterminal’s binding rules. This represents the scope tree
of the rest of the binding rules. In this case, the scope tree gets built up sort of like
foldr on a list.

The scope tree is a first-class representation of the binding structure of the program.
It’s not something that you explicitly work with, but it’s useful to know about.
Conceptually, syntax-spec uses your language’s binding rules to construct this
scope tree during expansion.

164 S Y N TA X - S P E C D O C U M E N TAT I O N

From the simple nonterminal my-expr, we put the binding-pair’s bindings in
scope using nest, providing body as the intial value of nested, like the base case
value of foldr.

Since we’re folding over the sequence of bs, the ellipses are inside of the nest.

A.1.1.3 Integrating Racket Subexpressions

In our state machine language, action expressions are very limited. Let’s remind
ourselves what the grammar for an action expression looks like:

(nonterminal action-spec

((~datum displayln) x:event-var))

An action expression can only displayln the value of a variable. What if we want
something fancier, like using format inside the displayln? Really, it’d be ideal
to be able to allow arbitrary racket expressions for the action. We can actually do
that!

(syntax-spec

...

(nonterminal/exporting state-spec

(state name:state-name

((~datum on-enter) body:racket-body ...+)

transition:transition-spec ...)

#:binding [(export name) (scope (import body) ...)]

(state name:state-name transition:transition-spec ...)

#:binding (export name))

(nonterminal transition-spec

(on (event-name:id arg:event-var ...)

body:racket-body

...

((~datum goto) next-state-name:state-name))

#:binding (scope (bind arg) ... (import body) ...))

...)

Instead of using action-spec and defining our own nonterminal for action expres-
sions, we can just use racket-body, which allows arbitrary racket expressions

A.1 T U T O R I A L 165

and definitions. And our event-var identifiers will be in scope in the racket ex-
pression! We can control how references to our DSL-bound variables behave in
Racket expressions and whether they’re allowed at all using reference compilers,
which we’ll discuss in the §1.1.4 “Compilation” section.

In addition to racket-body, syntax-spec provides racket-expr for allowing
Racket expressions, racket-var for allowing references to Racket-defined vari-
ables in DSL expressions, and racket-macro for allowing the language to be
extended by arbitrary Racket macros. We’ll talk more about macros in the §1.1.5
“Macros” section.

A.1.1.4 Compilation

Now that we have our grammar and binding rules defined, we must write a compiler
to translate a state machine program to Racket. We already have a host interface
macro defined, which is the entry point to our DSL:

(syntax-spec

...

(host-interface/expression

(machine #:initial initial-state:state-name s:state-spec ...)

#:binding (scope (import s) ... initial-state)

(error 'machine "compiler not yet implemented"))

...)

However, our compiler, which performs the actual translation, is not defined. The
compiler is a macro that translates our state machine language to Racket code. In
our compiler, we’ll translate the state machine to Racket classes using the state
machine pattern.

For example, let’s imagine how we’d translate the example state machine:

(define vending-machine

(machine

#:initial idle

(state idle

(on-enter (displayln "pay a dollar"))

(on (dollar)

(goto paid))

(on (select-item item)

(displayln "you need to pay before selecting an

item")

(goto idle)))

https://en.wikipedia.org/wiki/State_pattern
https://en.wikipedia.org/wiki/State_pattern

166 S Y N TA X - S P E C D O C U M E N TAT I O N

(state paid

(on-enter (displayln "select an item"))

(on (select-item item)

(displayln (format "dispensing ~a" item))

(goto idle)))))

We’ll create a class for the state machine, which acts as a context class, and a class
for each state:

(let ()

(define machine%

(class object%

(define state #f)

(define/public (set-state state%)

(set! state (new state% [machine this])))

(define/public (get-state)

(send state get-state))

(define/public (dollar)

(send/apply state dollar))

(define/public (select-item item)

(send/apply state select-item item))

(send this set-state idle)

(super-new)))

(define idle

(class object%

(init-field machine)

(define/public (get-state)

'idle)

(displayln "pay a dollar")

(define/public (dollar)

(send machine set-state paid))

(define/public (select-item item)

(displayln "you need to pay before selecting an

item")

(send machine set-state idle))

(super-new)))

A.1 T U T O R I A L 167

(define paid

(class object%

(init-field machine)

(define/public (get-state)

'idle)

(displayln "select an item")

(define/public (select-item item)

(displayln (format "dispensing ~a" item))

(send machine set-state idle))

(super-new)))

(new machine%))

The machine% class stores the current state instance and delegates to it. Each
state class has methods for each defined transition. Transition actions go in the
transition’s method and on-enter actions go in the class body. When a state is
entered, the machine% class creates a fresh instance of it, which runs the class
body, and sets the current state to that instance. Finally, we return an instance of
the machine class.

Now let’s start to write the compiler:

(syntax-spec

(binding-class event-var

#:reference-compiler mutable-reference-compiler)

...

(host-interface/expression

(machine #:initial initial-state:state-name s:state-spec ...)

#:binding (scope (import s) ... initial-state)

#'(compile-machine initial-state s ...))

...)

(define-syntax compile-machine

(syntax-parser

#:datum-literals (machine state on-enter)

[(_ initial-state

(state state-name

(~optional (on-enter action ...)

#:defaults ([(action 1) '()]))

e ...)

...)

168 S Y N TA X - S P E C D O C U M E N TAT I O N

#'(let ()

(define machine%

(class object%

(define state #f)

(define/public (set-state state%)

(set! state (new state% [machine this])))

(define/public (get-state)

(send state get-state))

(compile-proxy-methods (e) state)

(send this set-state initial-state)

(super-new)))

(define state-name

(class object%

(init-field machine)

(define/public (get-state)

'state-name)

action ...

(compile-event-method e machine) ...

(super-new)))

...

(new machine%))]))

We defined a macro, compile-machine, which expands to something similar to
what we wrote by hand above. One thing we have to do with syntax-spec is declare
a reference compiler in the binding-class declaration. This allows us to control
whether and how DSL identifiers behave in Racket expressions like actions. In our
case, we use mutable-reference-compiler, which allows event arguments to
be referenced and mutated. We don’t specify a reference compiler for state names,
so they cannot be referenced in Racket expressions. Only goto.

We have helpers to define the proxy methods in the machine% class and transition
methods in the state classes:

(define-syntax compile-proxy-methods

(syntax-parser

#:datum-literals (on goto)

[(_ ((on (event-name . _) . _) ...) target)

#:with (unique-event ...)

(remove-duplicates (map syntax-e (attribute event-name)))

#'(begin

A.1 T U T O R I A L 169

(define/public (unique-event . args)

(send/apply target unique-event args))

...)]))

(define-syntax compile-event-method

(syntax-parser

#:datum-literals (on goto)

[(_ (on (event-name arg ...)

action ...

(goto name))

machine)

#'(define/public (event-name arg ...)

action ...

(send machine set-state name))]))

For compile-proxy-methods, to generate one method definition for each possible
transition, we gather up all the transitions in compile-machine with that (e ...

...), remove the duplicate transition event names, and define a proxy method
for each one that delegates to the state instance, which is passed in as target.
#racket[compile-event-method] is pretty straightforward.

One thing to note is that Racket expressions like action in compile-event-method
get wrapped in a #%host-expression form by syntax-spec. You can usually
ignore this fact completely when writing a compiler, but if you try to inspect the
contents of a Racket expression in a compiler, you’ll have to account for it.

Now we have all the pieces to run programs using state machines:

> (require racket/class

syntax-spec-v3/tests/dsls/state-machine-for-tutorial)

> (define vending-machine

(machine

#:initial idle

(state idle

(on-enter (displayln "pay a dollar"))

(on (dollar)

(goto paid))

(on (select-item _)

(displayln "you need to pay before selecting an

item")

(goto idle)))

(state paid

(on-enter (displayln "select an item"))

(on (select-item item)

170 S Y N TA X - S P E C D O C U M E N TAT I O N

(displayln (format "dispensing ~a" item))

(goto idle)))))

pay a dollar

> (send vending-machine get-state)

'idle

> (send vending-machine select-item "chips")

you need to pay before selecting an item

pay a dollar

> (send vending-machine get-state)

'idle

> (send vending-machine dollar)

select an item

> (send vending-machine get-state)

'paid

> (send vending-machine select-item "chips")

dispensing chips

pay a dollar

> (send vending-machine get-state)

'idle

Note: a bug in versions of Racket prior to the (future) v8.17 release creates a
problem when a DSL defined with syntax-spec is used in the same module scope
as it is defined. If you put the syntax-spec declaration, compile-machine macro,
and example use above together in one module, expansion will raise an error for
the item reference. As a workaround until the v8.17 release, put your uses of the
DSL in another module or submodule. For example, you could put the vending
machine example above in a main or test submodule.

Symbol Tables

Symbol tables and symbol sets allow us to associate information with identifiers,
similar to §2.3 “Dictionaries with Identifier Keys” and §2.4 “Sets with Identifier
Keys”, but for DSL identifiers.

In our language’s compiler, we can use symbol set to raise an error when a state is
unreachable:

(syntax-spec

...

(host-interface/expression

(machine #:initial initial-state:state-name s:state-spec ...)

#:binding (scope (import s) ... initial-state)

(check-for-inaccessible-states #'initial-state (attribute s))

#'(compile-machine initial-state s ...))

https://github.com/racket/racket/issues/5212

A.1 T U T O R I A L 171

...)

(begin-for-syntax

(define (check-for-inaccessible-states initial-state-id

state-specs)

(define accessible-states

(get-accessible-states initial-state-id state-specs))

(for/list ([state-spec state-specs]

#:unless (symbol-set-member?

accessible-states

(state-spec-name state-spec)))

(error 'machine "Inaccessible state: ~a"

(syntax->datum (state-spec-name state-spec)))))

(define (get-accessible-states initial-state-id state-specs)

(define accessible-states (local-symbol-set))

(define (find-state-spec state-name)

(findf (lambda (state-spec)

(compiled-identifier=?

state-name

(state-spec-name state-spec)))

state-specs))

(define (add-reachable-states! state-name)

(unless (symbol-set-member? accessible-states state-name)

(symbol-set-add! accessible-states state-name)

(define state-spec (find-state-spec state-name))

(for ([next-state-name

(state-spec-next-state-names state-spec)])

(add-reachable-states! next-state-name))))

(add-reachable-states! initial-state-id)

accessible-states)

(define (state-spec-name state-spec)

(syntax-parse state-spec

[(state name . _) #'name]))

(define (state-spec-next-state-names state-spec)

(syntax-parse state-spec

[(state name

(~or ((~datum on-enter) . _)

((~datum on) ev

body

...

172 S Y N TA X - S P E C D O C U M E N TAT I O N

(goto next-state-name)))

...)

(attribute next-state-name)])))

We build up a symbol set of accessible states with a depth-first search over the
possible transitions starting from the initial state, and if we find a state that isn’t
accessible, we error.

This static check runs before we generate the compiled code. Compilers may have
many static analysis passes like this one, or even passes that emit an intermediate
representation like ANF. There are some special considerations to be made when
creating multi-pass compilers with intermediate representations in syntax-spec
which are covered in §1.3 “Advanced Tutorial: A Compiler with Transformative
Passes”

> (require racket/class

syntax-spec-v3/tests/dsls/state-machine-for-tutorial)

> (define gas-tank

(machine

#:initial full

(state empty

(on (re-fuel)

(goto full)))

(state full)))

machine: Inaccessible state: empty

We forgot to add a transition to go from full to empty. And since we start on full,
there is no way to get to empty.

A.1.1.5 Macros

syntax-spec allows us to make our DSLs macro-extensible. For example, let’s allow
users to create macros for definining states:

(syntax-spec

...

(extension-class state-macro)

(nonterminal/exporting state-spec

#:allow-extension state-macro

A.1 T U T O R I A L 173

...))

(define-syntax-rule

(define-state-syntax name trans)

(define-dsl-syntax name state-macro trans))

By adding an extension class called state-macro and allowing state-spec to
be extended by these state macros, transformers wrapped with state-macro can
be used in state-spec positions. syntax-spec provides define-dsl-syntax for
defining these wrapped transformers. These macros will be hygienic in our DSL.
Since only certain nonterminals are extensible by certain extension classes, we can
control what kinds of macros can be used where.

Now let’s create a macro in our language!

> (require racket/class

syntax-spec-v3/tests/dsls/state-machine-for-tutorial)

> (define-state-syntax simple-state

(syntax-rules ()

[(_ name [evt next] ...)

(state name

(on (evt) (goto next))

...)]))

> (define traffic-light

(machine

#:initial red

(simple-state red [tick green])

(simple-state green [tick yellow])

(simple-state yellow [tick red])))

> (send traffic-light get-state)

'red

> (send traffic-light tick)

> (send traffic-light get-state)

'green

> (send traffic-light tick)

> (send traffic-light get-state)

'yellow

> (send traffic-light tick)

> (send traffic-light get-state)

'red

174 S Y N TA X - S P E C D O C U M E N TAT I O N

The full code for the state machine example is available at https:

//github.com/michaelballantyne/syntax-spec/blob/main/tests/

dsls/state-machine-for-tutorial.rkt.

There is also an example of using the state machine language to create a
CSV browser with a GUI at https://github.com/michaelballantyne/

syntax-spec/blob/main/demos/minimal-state-machine/csv-browser.

rkt

A.1.2 Advanced Tutorial: Simply Typed Lambda Calculus

This guide demonstrates advanced usage of syntax-spec via the case study of
construscting a DSL for the simply typed lambda calculus.

Here is an example program in our language:

(let ([f (lambda ([x : Number]) x)])

(f 1))

Let’s start out with defining the grammar and binding rules for basic typed expres-
sions:

(syntax-spec

(binding-class typed-var)

(extension-class typed-macro #:binding-space stlc)

(nonterminal typed-expr

#:allow-extension typed-macro

#:binding-space stlc

x:typed-var

n:number

(#%lambda ([x:typed-var (~datum :) t:type] ...)

body:typed-expr)

#:binding (scope (bind x) ... body)

(#%app fun:typed-expr arg:typed-expr ...)

(#%let ([x:typed-var e:typed-expr] ...) body:typed-expr)

#:binding (scope (bind x) ... body)

(~> (e (~datum :) t)

#'(: e t))

https://github.com/michaelballantyne/syntax-spec/blob/main/tests/dsls/state-machine-for-tutorial.rkt
https://github.com/michaelballantyne/syntax-spec/blob/main/tests/dsls/state-machine-for-tutorial.rkt
https://github.com/michaelballantyne/syntax-spec/blob/main/tests/dsls/state-machine-for-tutorial.rkt
https://github.com/michaelballantyne/syntax-spec/blob/main/demos/minimal-state-machine/csv-browser.rkt
https://github.com/michaelballantyne/syntax-spec/blob/main/demos/minimal-state-machine/csv-browser.rkt
https://github.com/michaelballantyne/syntax-spec/blob/main/demos/minimal-state-machine/csv-browser.rkt

A.1 T U T O R I A L 175

(: e:typed-expr t:type)

(~> (fun arg ...)

#'(#%app fun arg ...)))

(nonterminal type

Number

((~datum ->) arg-type:type ... return-type:type))

(host-interface/expression

(stlc/expr e:typed-expr)

(infer-expr-type #'e)

#'(compile-expr e))

(host-interface/expression

(stlc/infer e:typed-expr)

(define t (infer-expr-type #'e))

(define t-datum (type->datum t))

#`'#,t-datum))

There are some features we’ve never seen here. Let’s go through them one by one:

(binding-class typed-var)

(extension-class typed-macro #:binding-space stlc)

(nonterminal typed-expr

...

#:binding-space stlc

...)

Syntax-spec supports binding spaces, which allow DSL forms to have the same
names as regular Racket forms like let without shadowing them. Even DSL
macros won’t shadow Racket names. We will eventually write a macro for let so
we don’t have to write #%let when we use the DSL.

(nonterminal typed-expr

...

(~> (e (~datum :) t)

#'(: e t))

(: e:typed-expr t:type)

...)

This is called a rewrite production. We have a DSL form, :, for type annotations like
(: 1 Number). We add a rewrite production to allow infix use like (1 : Number)

176 S Y N TA X - S P E C D O C U M E N TAT I O N

for better readability. The first part of a rewrite production is a syntax/parse

pattern and the second part is the DSL form that the source syntax should transform
into. The pattern cannot refer to binding classes, nonterminals, etc.

We have another rewrite production that converts function applications to #%app

forms. It is important that this comes after the type annotation rewrite. Otherwise,
infix usages would be treated as function applications.

In general, it is a good idea to tag most forms in your grammar like #%app to
make your compiler less bug-prone. It also allows us to rely on datum literals for
distinguishing between forms, which is useful when your form names are in a
special binding space.

Now let’s define infer-expr-type:

(begin-for-syntax

(struct number-type [] #:prefab)

(struct function-type [arg-types return-type] #:prefab)

(define-persistent-symbol-table types)

(define (infer-expr-type e)

(syntax-parse e

[n:number (number-type)]

[x:id (get-identifier-type #'x)]

[((~datum #%lambda) ([x:id _ t] ...) body)

(define arg-types (map parse-type (attribute t)))

(for ([x (attribute x)]

[t arg-types])

(extend-type-environment! x t))

(define body-type (infer-expr-type #'body))

(function-type arg-types body-type)]

[((~datum #%app) f arg ...)

(define f-type (infer-expr-type #'f))

(match f-type

[(function-type expected-arg-types return-type)

(unless (= (length expected-arg-types)

(length (attribute arg)))

(raise-syntax-error

'infer-expr-type

(format

"arity error. expected ~a arguments, but got

~a"

(length expected-arg-types)

A.1 T U T O R I A L 177

(length (attribute arg)))

this-syntax))

(for ([expected-type expected-arg-types]

[arg (attribute arg)])

(check-expr-type arg expected-type))

return-type]

[_ (raise-syntax-error

'infer-expr-type

(format

"type mismatch. expected a function type, but

got ~a"

(type->datum f-type))

#'f)])]

[((~datum :) e t-stx)

(define t (parse-type #'t-stx))

(check-expr-type #'e t)

t]

[((~datum #%let) ([x e] ...) body)

(for ([x (attribute x)]

[e (attribute e)])

(extend-type-environment! x (infer-expr-type e)))

(infer-expr-type #'body)]))

(define (get-identifier-type x)

(symbol-table-ref

types x

(lambda () (raise-syntax-error #f "untyped identifier" x))))

(define (extend-type-environment! x t)

(void (symbol-table-ref

types x

(lambda () (symbol-table-set! types x t)))))

(define (check-expr-type e expected-type)

(define actual-type (infer-expr-type e))

(unless (equal? expected-type actual-type)

(raise-syntax-error

'infer-expr-type

(format "type mismatch. expected ~a, but got ~a"

(type->datum expected-type)

(type->datum actual-type))

e)))

178 S Y N TA X - S P E C D O C U M E N TAT I O N

(define (parse-type t-stx)

(syntax-parse t-stx

[(~datum Number) (number-type)]

[((~datum ->) arg-type ... return-type)

(function-type (map parse-type (attribute arg-type))

(parse-type #'return-type))]))

(define (type->datum t)

(match t

[(number-type) 'Number]

[(function-type arg-types return-type)

(append (list '->)

(map type->datum arg-types)

(list (type->datum return-type)))])))

We use prefab structs for our compile-time representation of types and we have
a persistent symbol table mapping identifiers to types. A persistent symbol table
allows information like an identifier’s type to be used between modules even if
the providing module has been compiled. Eventually, we’ll add definitions to our
language, so when type-checking a module that requires a typed identifier, we’ll
need the identifier’s type from the persistent symbol table.

We have to use prefab structs because persistent symbol tables can’t persist non-
prefab structs. The only values allowed in a symbol table are those which satisfy
the syntax-datum? predicate.

extend-type-environment! uses a bit of a hack. By default, symbol tables error
when setting an identifier’s value after it has already been set. We will end up
re-inferring an expression’s type later on, so we use this hack to only set the type if
it isn’t already set.

The rest is a typical type checker, nothing syntax-spec-specific.

Now let’s implement our compiler:

(define-syntax compile-expr

(syntax-parser

[(_ n:number) #'n]

[(_ x:id) #'x]

[(_ ((~datum #%lambda) ([x:id _ _] ...) body))

#'(lambda (x ...) (compile-expr body))]

[(_ ((~datum #%app) f arg ...))

#'((compile-expr f) (compile-expr arg) ...)]

[(_ ((~datum :) e _)) #'(compile-expr e)]

A.1 T U T O R I A L 179

[(_ ((~datum #%let) ([x e] ...) body))

#'(let ([x (compile-expr e)] ...) (compile-expr body))]))

Nothing special here, it’s a straightforward translation to Racket. We pretty much
just throw away the types.

Finally, we can write macros for let and lambda:

(define-syntax define-stlc-syntax

(syntax-parser

[(_ name:id trans:expr)

#'(define-dsl-syntax name typed-macro trans)]))

(define-stlc-syntax let

(syntax-parser

[(_ ([x e] ...) body) #'(#%let ([x e] ...) body)]))

(define-stlc-syntax lambda

(syntax-parser

[(_ ([x (~datum :) t] ...) body)

#'(#%lambda ([x : t] ...) body)]))

(define-stlc-syntax let*
(syntax-parser

[(_ () body) #'(let () body)]

[(_ ([x:id e] binding ...) body)

#'(let ([x e]) (let* (binding ...) body))]))

Right now, these don’t need to be macros. But when we add definitions, We will
desugar multi-body let and lambda expressions to single-body ones.

Now we can run some programs:

> (require syntax-spec-v3/tests/dsls/simply-typed-lambda-calculus)

> (stlc/infer 1)

'Number

> (stlc/expr 1)

1

> (stlc/infer (lambda ([x : Number]) x))

'(-> Number Number)

> (stlc/expr (lambda ([x : Number]) x))

#<procedure:...lambda-calculus.rkt:221:7>

180 S Y N TA X - S P E C D O C U M E N TAT I O N

A.1.2.1 Integrating Racket Expressions

Let’s add arbitrary Racket expressions to our language. These can evaluate to
anything, so we can’t infer their types. We can require the user to annotate the type,
but we shouldn’t just trust that the type is correct. Instead, we should add a contract
check to ensure that the annotation is accurate.

We also need to add a contract check in the other direction, even if we don’t allow
arbitrary Racket expressions. Let’s consider a program in our language:

(stlc/expr (lambda ([f : (-> Number Number)] [x : Number]) (f x)))

It evaluates to a function which takes in a function and a number and applies the
function to a number. But stlc/expr gives us a raw procedure that we can pass
anything into!

((stlc/expr (lambda ([f : (-> Number Number)] [x : Number]) (f x)))

"not a function"

1)

This produces a runtime type error from inside the typed code! This should be
impossible. And if we allow DSL variables to be referenced in Racket expressions,
we’ll need to insert contract checks on references to make sure they’re used properly.
We can do this by creating a custom reference compiler.

Let’s do it!

(syntax-spec

(binding-class typed-var

#:reference-compiler typed-var-reference-compiler)

...

(nonterminal typed-expr

...

(rkt e:racket-expr (~datum :) t:type)

...)

...

(host-interface/expression

(stlc/expr e:typed-expr)

(define/syntax-parse t (infer-expr-type #'e))

A.1 T U T O R I A L 181

#'(compile-expr/top e t))

...)

(begin-for-syntax

(define (infer-expr-type e)

(syntax-parse e

...

[((~datum rkt) e (~datum :) t)

(parse-type #'t)]

...)))

(define-syntax compile-expr/top

(syntax-parser

[(_ e t-stx)

(define t (syntax->datum #'t-stx))

(define/syntax-parse e^

#'(compile-expr e))

#`(contract #,(type->contract-stx t)

e^

'stlc 'racket

#f #'e^)]))

(begin-for-syntax

(define typed-var-reference-compiler

(make-variable-like-reference-compiler

(lambda (x)

#`(contract #,(type->contract-stx (get-identifier-type x))

#,x

'stlc 'racket

'#,x #'#,x))))

(define (type->contract-stx t)

(match t

[(number-type) #'number?]

[(function-type arg-types return-type)

(define/syntax-parse (arg-type-stx ...)

(map type->contract-stx arg-types))

(define/syntax-parse return-type-stx

(type->contract-stx return-type))

#'(-> arg-type-stx ... return-type-stx)])))

182 S Y N TA X - S P E C D O C U M E N TAT I O N

(define-syntax compile-expr

(syntax-parser

...

[(_ ((~datum rkt) e (~datum :) t))

#`(contract #,(type->contract-stx (parse-type #'t))

e

'racket 'stlc

#f #'e)]))

We added a new form to our language, rkt, which contains a racket expression
and a type annotation. The compilation of this experssion involves a contract check
to make sure the value is of the expected type. We also added a contract check in
the other direction when a typed value flows out of the host interface and created a
custom reference compiler using make-variable-like-reference-compiler

which inserts a contract check when a DSL variable is referenced in racket. These
contract checks ensure typed values (particularly procedures) are used properly in
untyped code.

This implementation is far from efficient. Instead of generating the syntax for a
contract check everywhere, we should defer to a runtime function and have the
type flow into the runtime since it’s a prefab struct. We should also avoid inserting
a contract check every time a DSL variable is referenced in Racket and just do it
once per variable. But for this tutorial, we’ll keep it simple.

Let’s run some example programs now:

> (require syntax-spec-v3/tests/dsls/simply-typed-lambda-calculus)

> (stlc/expr

(let ([add (rkt + : (-> Number Number Number))])

(add 1 2)))

3

> (stlc/expr

(rkt "not a number" : Number))

broke its own contract
promised: number?
produced: "not a number"
in: number?
contract from: racket
blaming: racket

(assuming the contract is correct)
at: eval:3:0

> (stlc/expr

A.1 T U T O R I A L 183

(let ([add (rkt <= : (-> Number Number Number))])

(add 1 2)))

broke its own contract
promised: number?
produced: #t
in: the range of

(-ą number? number? number?)
contract from: racket
blaming: racket

(assuming the contract is correct)
at: eval:4:0

> ((stlc/expr (lambda ([f : (-> Number Number)] [x : Number]) (f x)))

"not a function"

1)

contract violation
expected: a procedure
given: "not a function"
in: the 1st argument of

(-ą (-ą number? number?) number? number?)
contract from: stlc
blaming: racket

(assuming the contract is correct)
at: ăpkgsą/syntax-spec-v3/tests/dsls/simply-typed-lambda-c

alculus.rkt:288:39
> (stlc/expr

(let ([app (lambda ([f : (-> Number Number)] [x : Number])

(f x))])

(rkt (app "not a function" 1) : Number)))

app: contract violation
expected: a procedure
given: "not a function"
in: the 1st argument of

(-ą (-ą number? number?) number? number?)
contract from: stlc
blaming: racket

(assuming the contract is correct)
at: eval:6:0

Our contract checks protect typed-untyped interactions.

184 S Y N TA X - S P E C D O C U M E N TAT I O N

A.1.2.2 Adding Definitions

Next, let’s add definitions to our language:

(syntax-spec

...

(nonterminal typed-expr

...

(block d:typed-definition-or-expr ... e:typed-expr)

#:binding (scope (import d) ... e)

...)

...

(nonterminal/exporting typed-definition-or-expr

#:allow-extension typed-macro

#:binding-space stlc

(#%define x:typed-var t:type e:typed-expr)

#:binding (export x)

(begin defn:typed-definition-or-expr ...+)

#:binding [(re-export defn) ...]

e:typed-expr)

...

(host-interface/definitions

(stlc body:typed-definition-or-expr ...+)

#:binding [(re-export body) ...]

(type-check-defn-or-expr/pass1 #'(begin body ...))

(type-check-defn-or-expr/pass2 #'(begin body ...))

#'(compile-defn-or-expr/top (begin body ...))))

We added a new nonterminal for forms that can be used in a definition context.
Since definitions inside of a begin should spliced in to the surrounding definition
context, we use the binding rule re-export, which we haven’t seen yet. As the
name suggests, it takes all exported names from an exporting nonterminal sub-
expression and re-exports them. Here is an example of this splicing in regular
Racket:

> (begin

(begin

A.1 T U T O R I A L 185

(define a 1))

(define b 2))

> (+ a b)

3

We also added the block form to our expression nonterminal so we can use
definitions in expressions. To make the bindings from the definitions accessible
within the block form, we use scope and import.

To support top-level definitions, we added a new host interface using
host-interface/definitions, which we’ve never seen before. This de-
fines a special type of host interface that can only be used in a definition context.
This type of host interface can be used to define module-level variables that can be
used with provide and require. Now that this is possible, it is important that
we’re using a persistent symbol table to store type information.

Now let’s update the rest of our code:

(begin-for-syntax

(define (infer-expr-type e)

(syntax-parse e

...

[((~datum block) d ... e)

(type-check-defn-or-expr/pass1 #'(begin d ...))

(type-check-defn-or-expr/pass2 #'(begin d ...))

(infer-expr-type #'e)]

...))

...

(define (type-check-defn-or-expr/pass1 e)

(syntax-parse e

[((~datum #%define) x:id t _)

(extend-type-environment! #'x (parse-type #'t))]

[((~datum begin) body ...)

(for ([body (attribute body)])

(type-check-defn-or-expr/pass1 body))]

[_ (void)]))

(define (type-check-defn-or-expr/pass2 e)

(syntax-parse e

[((~datum #%define) _ t e)

(check-expr-type #'e (parse-type #'t))]

186 S Y N TA X - S P E C D O C U M E N TAT I O N

[((~datum begin) body ...)

(for ([body (attribute body)])

(type-check-defn-or-expr/pass2 body))]

[e (void (infer-expr-type #'e))])))

(define-syntax compile-expr/top

(syntax-parser

[(_ e t-stx (~optional should-skip-contract?))

(define t (syntax->datum #'t-stx))

(define/syntax-parse e^

#'(compile-expr e))

(if (attribute should-skip-contract?)

#'e^

#`(contract #,(type->contract-stx t)

e^

'stlc 'racket

#f #'e))]))

(define-syntax compile-expr

(syntax-parser

...

[(_ ((~datum block) d ... e))

#'(let ()

(compile-defn-or-expr d)

...

(compile-expr e))]))

(define-syntax compile-defn-or-expr/top

(syntax-parser

[(_ ((~datum #%define) x:id _ body))

#`(define x (compile-expr/top

body #,(get-identifier-type #'x) #t))]

[(_ ((~datum begin) body ...+))

#'(begin (compile-defn-or-expr/top body) ...)]

[(_ e)

#`(compile-expr/top e #,(infer-expr-type #'e) #t)]))

(define-syntax compile-defn-or-expr

(syntax-parser

[(_ ((~datum #%define) x:id _ body))

#`(define x (compile-expr body))]

[(_ ((~datum begin) body ...+))

A.1 T U T O R I A L 187

#'(begin (compile-defn-or-expr body) ...)]

[(_ e)

#'(compile-expr e)]))

(define-stlc-syntax let

(syntax-parser

[(_ ([x e] ...) body)

#'(#%let ([x e] ...) body)]

[(_ ([x e] ...) body ...+)

#'(#%let ([x e] ...) (block body ...))]))

(define-stlc-syntax lambda

(syntax-parser

[(_ ([x (~datum :) t] ...) body)

#'(#%lambda ([x : t] ...) body)]

[(_ ([x (~datum :) t] ...) body ...+)

#'(#%lambda ([x : t] ...) (block body ...))]))

(define-stlc-syntax let*
(syntax-parser

[(_ () body) #'(let () body)]

[(_ ([x:id e] binding ...) body)

#'(let ([x e]) (let* (binding ...) body))]))

(define-stlc-syntax define

(syntax-parser

[(_ x:id (~datum :) t e)

#'(#%define x t e)]

[(_ (f:id [arg:id (~datum :) arg-type] ...)

(~datum ->) return-type body ...)

#'(#%define f (-> arg-type ... return-type)

(lambda ([arg : arg-type] ...)

body

...))]))

To type-check a group of definitions, we must take two passes. The first pass must
record the type information of all defined identifiers, and the second pass checks
the types of the bodies of definitions. Since mutual recursion is possible, we need
the types of all identifiers before we can start checking the types of definition
bodies which may reference variables before their definitions. This is a common
pattern when working with mutually recursive definition contexts in general.

188 S Y N TA X - S P E C D O C U M E N TAT I O N

We added an optional flag to disable the contract check for compile-expr/top
when compiling top-level definitions since it is unnecessary.

We also added support for multi-body let, lambda, and let*, and we added a
macro around #%define for syntactic sugar.

Let’s run it!

> (require syntax-spec-v3/tests/dsls/simply-typed-lambda-calculus)

> (stlc

(begin

(define two : Number

2)

(define three : Number

3))

(define add : (-> Number Number Number)

(rkt + : (-> Number Number Number))))

> (stlc/expr (add two three))

5

A.1.3 Advanced Tutorial: A Compiler with Transformative Passes

Many DSLs need a compiler that transforms syntax in several passes. Some passes
may just be static checks, and others may actually transform the program, often
to a restricted subset of the surface language. When using syntax-spec, some
special care needs to be taken with transformative passes. To demonstrate how
such a DSL can be implemented, we will create a language with an A-normal form
transformation and an unused variable pruning optimization.

A.1.3.1 Expander

Here is the syntax-spec of our language:

#lang racket

(require syntax-spec

(for-syntax syntax/parse racket/syntax

racket/match racket/list))

(syntax-spec

(binding-class var

#:reference-compiler immutable-reference-compiler)

(nonterminal full-expr

#:binding-space anf

https://en.wikipedia.org/wiki/A-normal_form

A.1 T U T O R I A L 189

n:number

x:var

(let ([x:var e:full-expr]) body:full-expr)

#:binding (scope (bind x) body)

(+ a:full-expr b:full-expr)

(* a:full-expr b:full-expr)

(/ a:full-expr b:full-expr)

(rkt e:racket-expr))

(nonterminal anf-expr

#:binding-space anf

((~datum let) ([x:var e:rhs-expr]) body:anf-expr)

#:binding (scope (bind x) body)

e:rhs-expr)

(nonterminal rhs-expr

#:binding-space anf

((~datum +) a:immediate-expr b:immediate-expr)

((~datum *) a:immediate-expr b:immediate-expr)

((~datum /) a:immediate-expr b:immediate-expr)

((~datum rkt) e:racket-expr)

e:immediate-expr)

(nonterminal immediate-expr

#:binding-space anf

x:var

n:number)

(host-interface/expression

(eval-expr e:full-expr)

#'(compile-expr e)))

Our language supports arithmetic, local variables, and Racket subexpressions.

We have the following nonterminals:

• full-expr: The surface syntax of a program

• anf-expr: An expression in A-normal form. Users will not be writing these
expressions; the compiler will transform full-exprs the user writes into
anf-exprs.

• rhs-expr: An expression which is allowed to be on the right-hand side of
a binding pair in an expression when it is in A-normal form. Conceptually,
these expressions take at most one "step" of reduction to evaluate. In other
words, no nested expressions (except for rkt expressions).

190 S Y N TA X - S P E C D O C U M E N TAT I O N

• immediate-expr: Atomic expressions that can immediately be evaluated.

A-normal form makes the evaluation order of the program completely unambiguous
and simplifies compilation to a language like assembly. Now, let’s transform our
surface syntax to it!

A.1.3.2 A-normal Form Transformation

The core idea of transforming to A-normal form is extracting nested sub-
expressions into temporary variables. For example:

(+ (+ 1 2) (+ 3 4))

~>

(let ([tmp1 (+ 1 2)])

(let ([tmp2 (+ 3 4)])

(+ tmp1 tmp2)))

To follow our grammar for an anf-expr, the arguments to functions like + must be
immediate expressions, like variable references or numbers. Our source program
did not obey this rule, so we had to create temporary variables for subexpressions
and replace each subexpression with a reference to its temporary variable.

Now let’s automate this process:

(begin-for-syntax

;; full-expr -> anf-expr

;; convert an expression to A-normal form

(define (to-anf e)

(define bindings-rev '())

;; Identifier rhs-expr -> Void

;; record a variable binding pair

(define (lift-binding! x e)

(set! bindings-rev (cons (list x e) bindings-rev)))

(define e^ (to-rhs! e lift-binding!))

(wrap-lets e^ (reverse bindings-rev)))

;; full-expr (Identifier rhs-expr -> Void) -> rhs-expr

;; convert an expr to an rhs-expr, potentially recording

bindings

(define (to-rhs! e lift-binding!)

(syntax-parse e

[((~datum let) ([x e]) body)

(define e^ (to-rhs! #'e lift-binding!))

A.1 T U T O R I A L 191

(lift-binding! #'x e^)

(to-rhs! #'body lift-binding!)]

[(op a b)

(define/syntax-parse a^ (to-immediate! #'a lift-binding!))

(define/syntax-parse b^ (to-immediate! #'b lift-binding!))

#'(op a^ b^)]

[(~or ((~datum rkt) _)

x:id

n:number)

this-syntax]))

;; full-expr (Identifier rhs-expr -> Void) -> immediate-expr

;; convert a full-expr to an immediate-expr, potentially

recording bindings

(define (to-immediate! e lift-binding!)

(syntax-parse e

[(~or x:id n:number) this-syntax]

[_

(define/syntax-parse tmp (generate-temporary 'tmp))

(define e^ (to-rhs! this-syntax lift-binding!))

(lift-binding! #'tmp e^)

#'tmp]))

;; rhs-expr (Listof (List Identifier rhs-expr)) -> anf-expr

;; wrap the innermost expression with `let`s for the

bindings that were recorded

(define (wrap-lets e bindings)

(match bindings

[(cons binding bindings)

(with-syntax ([x (first binding)]

[rhs (second binding)]

[body (wrap-lets e bindings)])

#'(let ([x rhs]) body))]

['() e])))

Our transformation goes through the expression, recording the temporary variable
bindings to lift. The final rhs-expr returned by to-rhs will be the body of the
innermost let at the end of the transformation. Converting to an rhs-expr or an
immediate-expr has the side effect of recording a binding pair to be lifted, and
the result of replacing complex subexpressions with temporary variable references
is returned from each helper.

192 S Y N TA X - S P E C D O C U M E N TAT I O N

Notice that the code generation pass is implemented as macro, while the interme-
diate passes are implemented as compile-time functions. Using a Racket macro
for the code generator is convenient because it provide hygiene for any tempo-
rary names we introduce. For the intermediate passes we must use compile-time
functions rather than macros, for three reasons:

• The intermediate passes do not generate Racket syntax that can be further
expanded by the Racket macro expander. Instead, they generate code in our
DSL’s intermediate representation.

• Compiler passes may need additional arguments and return values, which
may not be syntax objects. This is possible with a compile-time function, but
not with a macro. For example, our A-normal form transformation receives
the bind! procedure as an argument.

• Compiler passes may use side effects, and rely on a particular order of
evaluation. For our A-normal form pass, we want to create let-bindings for
the innermost subexpressions first. We accomplish this via the way we order
calls to the bind! procedure.

A.1.3.3 Pruning unused variables

Using syntax-spec’s symbol tables and binding operations, we can add an optimiz-
ing pass that removes unused variables.

For example:

(let ([x (+ 2 2)])

(let ([y (+ 3 3)])

x))

~>

(let ([x (+ 2 2)])

x)

Since y is not referenced, we can just remove its definition from the program. Note
that this optimization only makes sense when the right-hand-side of a definition
is free of side-effects. For example, pruning y in this example would change the
behavior of the program:

(let ([x (+ 2 2)])

(let ([y (rkt (begin (displayln "hello!") (+ 3 3)))])

x))

~>

(let ([x (+ 2 2)])

A.1 T U T O R I A L 193

x)

Without pruning, this would print something, but with pruning, it would not. Our
optimization shouldn’t change the behavior of the program. This DSL is designed
with the requirement that rkt forms only have pure computations inside, but this
cannot easily be checked. As such, we will assume Racket subexpressions are free
of side effects, and our optimization will only be sound for side-effect-free Racket
subexpressions.

(begin-for-syntax

;; anf-expr -> anf-expr

;; reconstruct the expression, excluding definitions of

unused variables

(define (prune-unused-variables e)

(define used-vars (get-used-vars e))

(remove-unused-vars e used-vars))

;; anf-expr -> ImmutableSymbolSet

;; compute the set of used variables

(define (get-used-vars e)

(syntax-parse e

[((~datum let) ([x e]) body)

(define body-vars (get-used-vars #'body))

(if (symbol-set-member? body-vars #'x)

(symbol-set-union body-vars (get-used-vars #'e))

body-vars)]

[(op a b)

(symbol-set-union (get-used-vars #'a) (get-used-vars #'b))]

[x:id

(immutable-symbol-set #'x)]

[(~or ((~datum rkt) _) n:number) (immutable-symbol-set)]))

;; anf-expr ImmutableSymbolSet -> anf-expr

;; reconstruct the expression, excluding definitions of

specified unused variables

(define (remove-unused-vars e used-vars)

(syntax-parse e

[((~and let (~datum let)) ([x e]) body)

(define/syntax-parse body^

(remove-unused-vars #'body used-vars))

(if (symbol-set-member? used-vars #'x)

#'(let ([x e])

body^)

194 S Y N TA X - S P E C D O C U M E N TAT I O N

#'body^)]

[_ this-syntax])))

First, we figure out which variables are referenced, using a bottom-up traversal.
We only include consider variables in the right-hand-side of a let used if we have
determined that the variable bound by the let is used in its body. For now, we
ignore references in Racket subexpressions.

Then, with that knowledge, we reconstruct the program, only including bindings
for used variables.

This optimization is slightly simplified by having already transformed the program
to A-normal form. We can see this in remove-unused-vars: We don’t need to
recur on the right-hand-side of a let-binding because we know there are no variable
bindings to be removed from that expression.

A.1.3.4 Putting it all Together

Due to the nature of expansion and binding structure, some special care needs
to be taken in sequencing multiple transformative compiler passes. Since our
A-normal form transformation adds new bindings, we need to re-expand the re-
sult so syntax-spec can compute and check binding information for use in later
passes/compilation:

(begin-for-syntax

(define local-expand-anf (nonterminal-expander anf-expr)))

(define-syntax compile-expr

(syntax-parser

[(_ e)

(define e/anf

(local-expand-anf (to-anf #'e) #:should-rename? #t))

(define e/pruned

(prune-unused-variables e/anf))

(define/syntax-parse e/pruned^

(local-expand-anf e/pruned #:should-rename? #t))

#'(compile-anf e/pruned^)]))

We perform this re-expansion using nonterminal-expander. This function ex-
pects DSL syntax of a specified nonterminal (here, anf-expr) and expands macros
in the DSL code, checks binding structure, etc. It’s kind of like local-expand

but for a particular nonterminal. This is what happens in a host interface that

A.1 T U T O R I A L 195

produces the expanded, core syntax that your compiler works with. We use
#:should-rename? #t to ensure that we re-compile and rename identifiers in
this expansion.

The expansion after pruning is technically unnecessary for this example since we
are only removing bindings in that pass, but it is good to always make sure your
compiler is receiving freshly expanding syntax. This extra expansion also makes
sure your optimization produces valid syntax. In general, even if your compiler
just has a single transformative pass before compilation, you should expand the
result of the pass.

An additional caveat is that identifiers need to undergo the same number of expan-
sions for things to work properly. The easiest way to do this is to expand only the
entire DSL expression at once, rather than expanding subexpressions individually.

Finally, we must implement compilation of A-normal form expressions to Racket,
which is straightforward:

(define-syntax compile-anf

(syntax-parser

[(_ ((~datum let) ([x e]) body))

#'(let ([x (compile-anf e)]) (compile-anf body))]

[(_ (op a b)) #'(op a b)]

[(_ ((~datum rkt) e))

#'(let ([x e])

(if (number? x)

x

(error 'rkt "expected a number, got ~a" x)))]

[(_ e) #'e]))

> (eval-expr 1)

1

> (eval-expr (let ([x 1]) (let ([y 2]) x)))

1

> (eval-expr (let ([unused (rkt (displayln "can anyone hear

me?"))])

42))

42

To summarize the key points:

• We used compile-time functions for compiler passes, rather than macros.

• We can have multiple passes in a compiler simply by sequencing compile-
time functions that operate on expanded DSL expressions.

196 S Y N TA X - S P E C D O C U M E N TAT I O N

• Since we have transformative passes in our compiler, we must re-expand
resulting syntax using nonterminal-expander after each transformation.

A.1.4 Advanced Tutorial: An Interpreted Language

This guide demonstrates how to use syntax-spec to create an interpreted language,
as well as the benefits of this approach.

Typically, syntax-spec is used to create languages that compile to Racket. However,
it’s possible to use it to create an interpreted language as well. In such an imple-
mentation, syntax-spec will enforce the grammar, check binding, macro-expand the
source program, etc. and pass off the expanded, core syntax to an interpreter that
evaluates it to a value. As an example, let’s create an interpreted implementation
of the lambda calculus.

A.1.4.1 Expander

Here is the syntax-spec:

#lang racket

(require syntax-spec (for-syntax syntax/parse))

(syntax-spec

(binding-class lc-var #:binding-space lc)

(extension-class lc-macro #:binding-space lc)

(nonterminal lc-expr

#:binding-space lc

#:allow-extension lc-macro

n:number

(+ e1:lc-expr e2:lc-expr)

x:lc-var

(lambda (x:lc-var) e:lc-expr)

#:binding (scope (bind x) e)

(~> (e1 e2)

(syntax/loc this-syntax (#%app e1 e2)))

(#%app e1:lc-expr e2:lc-expr))

(host-interface/expression

(lc-expand e:lc-expr)

#'#'e))

A.1 T U T O R I A L 197

We have numbers, binary addition, variables, lambdas, and applications. The
interesting bit is the host interface lc-expand. The result is the expanded syntax
itself! For example:

> (lc-expand ((lambda (x) x) 1))

#<syntax:eval:4:0 (#%app (lambda (x) x) 1)>

The host-interface could also just invoke the interpreter directly on the syntax:

(host-interface/expression

(lc e:lc-expr)

#'(lc-eval #'e empty-env))

This is what you’d normally do, but we haven’t implemented lc-eval yet so we’ll
stick with lc-expand.

Our language is also macro-extensible, so the result of lc-expand expands macros
away:

(require (for-syntax syntax/parse))

(define-dsl-syntax let lc-macro

(syntax-parser

[(_ ([x:id e:expr]) body:expr)

#'((lambda (x) body) e)]))

> (lc-expand (let ([x 1]) (+ x x)))

#<syntax:eval:6:0 (#%app (lambda (x) (+ x x)) 1)>

A.1.4.2 Interpreter

We can use the output of lc-expand as the input of an interpreter. But first, let’s
define some helpers.

We will be building a strict, environment-based interpreter for this language, so we
need to define what our environment will look like.

The environment needs to map variables to values, and we have the result of
syntax-spec expansion, so we can use symbol tables! This means our environment
will map identifiers to values and will respect hygiene. syntax-spec gives us this
benefit of hygienic environments for free, which is important. If we used a hash
from symbols to values, which would contain no binding/hygiene information, an
example like this would break:

198 S Y N TA X - S P E C D O C U M E N TAT I O N

(define-dsl-syntax m lc-macro

(syntax-parser

[(_ e) #'(let ([tmp 2]) e)]))

(lc (let ([tmp 1]) (m tmp)))

The macro-introduced tmp would shadow the surface syntax tmp and we’d get 2
instead of 1.

(require (for-template syntax-spec))

(define empty-env (immutable-symbol-table))

(define (env-lookup env x)

(if (symbol-table-has-key? env x)

(symbol-table-ref env x)

x))

(define (env-extend env x v)

(symbol-table-set env x v))

One more thing we’ll need is the ability to raise errors. Luckily, since we’re
operating on syntax, we can report the source location of an error.

(require racket/syntax-srcloc)

(define (lc-error stx msg)

(define loc (syntax-srcloc stx))

(if loc

(raise-user-error (format "~a: ~a" (srcloc->string loc) msg))

(raise-user-error 'lc msg)))

> (lc-error #'x "something went wrong")

eval:16:0: something went wrong

Alright, now let’s define our interpreter:

(require syntax/parse)

(define-syntax-rule (lc e)

(lc-eval (lc-expand e) empty-env))

(define (lc-eval stx env)

(syntax-parse stx

A.1 T U T O R I A L 199

#:datum-literals (+ lambda #%app)

[n:number

(syntax->datum #'n)]

[(+ e1 e2)

(define v1 (lc-eval #'e1 env))

(unless (number? v1)

(lc-error this-syntax "+ expects number"))

(define v2 (lc-eval #'e2 env))

(unless (number? v2)

(lc-error this-syntax "+ expects number"))

(+ v1 v2)]

[x:id

(env-lookup env #'x)]

[(lambda (x:id) e:expr)

(lambda (v) (lc-eval #'e (env-extend env #'x v)))]

[(#%app e1 e2)

(match (lc-eval #'e1 env)

[(? procedure? f)

(f (lc-eval #'e2 env))]

[_

(lc-error this-syntax "applied non-function")])]))

> (lc 1)

1

> (lc (+ 1 1))

2

> (lc (let ([x 1]) (+ x x)))

2

> (lc ((lambda (x) (+ x 1)) 3))

4

> (lc (1 2))

eval:24:0: applied non-function
> (define-dsl-syntax m lc-macro

(syntax-parser

[(_ e) #'(let ([tmp 2]) e)]))

> (lc (let ([tmp 1]) (m tmp)))

1

Pretty cool!

To recap, we are using syntax-spec as a frontend for our interpreter, which operates
on expanded syntax and uses symbol tables as an environment.

200 S Y N TA X - S P E C D O C U M E N TAT I O N

Here are some of the benefits of writing an interpreter in this style:

• We operate on syntax, which means we easily get source locations in errors
and we can use syntax/parse to perform case analysis on expressions

• Our interpreter can assume that the program is grammatically valid and well-
bound since we are operating on the result of expansion from syntax-spec

• We can use symbol tables for environments, which are hygienic

• Our language is macro-extensible and our interpreter only has to operate on
core forms

A.1.4.3 Supporting Racket Subexpressions

We can add limited support for Racket subexpressions to our language:

(syntax-spec

(nonterminal lc-expr

#:binding-space lc

#:allow-extension lc-macro

n:number

(+ e1:lc-expr e2:lc-expr)

x:lc-var

(lambda (x:lc-var) e:lc-expr)

#:binding (scope (bind x) e)

(rkt e:expr)

(~> (e1 e2)

(syntax/loc this-syntax (#%app e1 e2)))

(#%app e1:lc-expr e2:lc-expr)))

We added (rkt e:expr) to the productions. Usually for racket expressions, we
use racket-expr, which wraps the expression with #%host-expression. This
does some work behind the scenes to make sure we can refer to DSL bindings in
the Racket expression. But for this syntax interpreter, that won’t work, so we’ll just
use expr to avoid wrapping the expression in a #%host-expression. Evaluation
is simple:

(define (lc-eval stx env)

(syntax-parse stx

#:datum-literals (+ lambda #%app rkt)

[n:number

(syntax->datum #'n)]

A.1 T U T O R I A L 201

[(+ e1 e2)

(define v1 (lc-eval #'e1 env))

(unless (number? v1)

(lc-error this-syntax "+ expects number"))

(define v2 (lc-eval #'e2 env))

(unless (number? v2)

(lc-error this-syntax "+ expects number"))

(+ v1 v2)]

[x:id

(env-lookup env #'x)]

[(lambda (x:id) e:expr)

(lambda (v) (lc-eval #'e (env-extend env #'x v)))]

[(#%app e1 e2)

(match (lc-eval #'e1 env)

[(? procedure? f)

(f (lc-eval #'e2 env))]

[_

(lc-error this-syntax "applied non-function")])]

[(rkt e)

(eval #'e)]))

> (lc (rkt (* 4 2)))

8

We just add a case that calls eval on the Racket expression! However, there are
some limitations with this method. In particular, we have access to top-level names
like *, but not local variables defined outside of the Racket subexpression, because
eval is evaluating against the global namespace and not capturing local variable
definitions.

> (define top-level-x 2)

> (lc (rkt top-level-x))

2

> (let ([local-x 3])

(lc (rkt local-x)))

local-x: undefined;
cannot reference an identifier before its definition

in module: top-level

Similarly, we cannot reference lc-vars:

> (lc (let ([lc-x 4]) (rkt lc-x)))

lc-x: undefined;

202 S Y N TA X - S P E C D O C U M E N TAT I O N

cannot reference an identifier before its definition
in module: top-level

A.2 R E F E R E N C E 203

A.2 R E F E R E N C E

(require syntax-spec-v3) package: syntax-spec-v3

A.2.1 Specifying Languages

This section describes the syntax of the syntax-spec metalanguage, used to
describe the grammar, binding structure, and host interface of a DSL.

Language specifications are made via the subforms of syntax-spec, which must
be used at module-level.

(syntax-spec spec-def ...)

spec-def = binding-class

| extension-class

| nonterminal

| host-interface

The following subsections address each kind of declaration allowed within the
syntax-spec form.

A.2.1.1 Binding classes

Binding classes distinguish types of binding. When a reference resolves to a binder,
it is an error if the binding class declared for the reference position does not match
the binding class of the binding position.

(binding-class id binding-class-option ...)

binding-class-option = #:description string-literal

| #:binding-space space-symbol

| #:reference-compiler reference-compiler-expr

The #:description option provides a user-friendly phrase describing the kind of
binding. This description is used in error messages.

The #:binding-space option specifies a binding space to use for all bindings and
references declared with this class. Operationally, the binding space declaration

https://pkgs.racket-lang.org/package/syntax-spec-v3

204 S Y N TA X - S P E C D O C U M E N TAT I O N

causes the syntax-spec expander to add the binding space scope to bindings and
references. The scope is added to the scope sets of all binding occurrences. When
parsing a reference position declared with a binding class that has an associated
binding space, the name that is looked up is augmented with the binding class
scope in order to give it access to bindings defined in the space.

1

The #:reference-compiler option specifies a reference compiler for controlling
how references to variables of this binding class are treated in Racket code.

A.2.1.2 Extension classes

Extension classes distinguish types of extensions to languages. A syntax trans-
former is tagged with an extension class using define-dsl-syntax. Nonterminals
can be declared extensible by a certain extension class using #:allow-extension.
These extensions are expanded away into core DSL forms before compilation.

(extension-class id extension-class-option)

extension-class-option = #:description string-literal

| #:binding-space space-symbol

The #:description option provides a user-friendly phrase describing the kind of
extension. This description is used in error messages.

The #:binding-space option specifies a binding space to use for all extensions
with this class.

A.2.1.3 Nonterminals

(nonterminal id nonterminal-option production ...)

Defines a nonterminal supporting let-like binding structure.

Example:

(syntax-spec

(binding-class my-var)

1 See §2.2.1 “Compiling references to DSL bindings within Racket code” for more information about
reference compilers

A.2 R E F E R E N C E 205

(nonterminal my-expr

n:number

x:my-var

(my-let ([x:my-var e:my-expr] ...) body:my-expr)

#:binding (scope (bind x) ... body)))

(nonterminal/nesting id (nested-id) nonterminal-

option production ...)

Defines a nesting nonterminal supporting nested, let*-like binding structure.
Nesting nonterminals may also be used to describe complex binding structures like
for match.

Example:

(syntax-spec

(binding-class my-var)

(nonterminal my-expr

n:number

x:my-var

(my-let* (b:binding-pair ...) body:my-expr)

#:binding (nest b ... body))

(nonterminal/nesting binding-pair (nested)

[x:my-var e:my-expr]

#:binding (scope (bind x) nested)))

(nonterminal/exporting id nonterminal-option production ...)

Defines an exporting nonterminal which can export bindings, like define and
begin.

Example:

(syntax-spec

(binding-class my-var)

(nonterminal/exporting my-defn

(my-define x:my-var e:my-expr)

#:binding (export x)

(my-begin d:my-defn ...)

206 S Y N TA X - S P E C D O C U M E N TAT I O N

#:binding [(re-export d) ...])

(nonterminal my-expr

n:number))

Nonterminal options

nonterminal-option = #:description string-literal

| #:allow-extension extension-class-spec

| #:binding-space space-symbol

extension-class-spec = extension-class-id

| (extension-class-id ...)

The #:description option provides a user-friendly phrase describing the kind of
nonterminal. This description is used in error messages.

The #:allow-extension option makes the nonterminal extensible by macros of
the given extension class(es).

The #:binding-space option specifies a binding space to use for all bindings and
references declared with this nonterminal.

Productions

production = rewrite-production

| form-production

| syntax-production

rewrite-production = (~> syntax-pattern

pattern-directive ...

body ...+)

form-production = (form-id . syntax-spec) maybe-binding-spec

| form-id

syntax-production = syntax-spec maybe-binding-spec

maybe-binding-spec = #:binding binding-spec

|

A.2 R E F E R E N C E 207

A rewrite production allows certain terms to be re-written into other forms. For
example, you might want to tag literals:

(syntax-spec

(nonterminal peg

(~> (~or s:string s:char s:number s:regexp)

#:with #%peg-datum (datum->syntax #'s '#%peg-datum)

#'(#%peg-datum s))

...))

Rewrite productions don’t have binding specs since they declare an expansion of
surface syntax into a another DSL form. The don’t necessarily have to expand into a
core form like one declared by a form production or a syntax production. A rewrite
production can expand into a DSL macro usage or another rewrite production.

Form productions and syntax productions declare core forms in the nonterminal
which may have binding specs. If a binding spec is not provided, one is implicitly
created. In this case, or if any spec variable is excluded from a binding spec in
general, it will be treated as a reference position and implicitly added to the binding
spec.

A form production defines a form with the specified name. You may want to use a
syntax production if you are re-interpreting racket syntax. For example, if you are
implementing your own block macro using syntax-spec:

(syntax-spec

(nonterminal/exporting block-form

#:allow-extension racket-macro

((~literal define-values) (x:racket-var ...) e:racket-expr)

#:binding [(export x) ...]

((~literal define-syntaxes) (x:racket-macro ...) e:expr)

#:binding (export-syntaxes x ... e)

e:racket-expr))

When a form production’s form is used outside of the context of a syntax-spec
DSL, like being used directly in Racket, a syntax error is thrown.

208 S Y N TA X - S P E C D O C U M E N TAT I O N

A.2.1.4 Syntax specs

syntax-spec = ()

| keyword

| ...

| ...+

| (~literal id maybe-space)

| (~datum id)

| (syntax-spec . syntax-spec)

| spec-variable-id:binding-class-id

| spec-variable-id:nonterminal-id

| spec-variable-id:extension-class-id

maybe-space = #:space space-name

|

Syntax specs declare the grammar of a DSL form.

• () specifies an empty list.

• keyword specifies a keyword like #:key .

• ... specifies zero or more repetitions of the previous syntax spec.

• ...+ specifies one or more repetitions of the previous syntax spec.

• (~literal id maybe-space) specifies a literal identifier and optionally
allows the specification of a binding space for the identifier.

• (~datum id) specifies a datum literal.

• (syntax-spec . syntax-spec) specifies a pair of syntax specs.

• spec-variable-id:binding-class-id specifies an identifier sub-
expression belonging to the specified binding class. For example: x:my-var
specifies an identifier of the my-var binding class.

• spec-variable-id:nonterminal-id specifies a sub-expression that con-
forms to the specified nonterminal’s grammar. For example: e:my-expr
specifies a sub-expression that is a my-expr, where my-expr is a nontermi-
nal name.

A.2 R E F E R E N C E 209

• spec-variable-id:extension-class-id specifies a sub-expression that
is treated as a phase-1 transformer expression. This is used when your
language has macro definitions.

A.2.1.5 Binding specs

binding-spec = spec-variable-id

| (bind spec-variable-id)

| (bind-syntax spec-variable-id spec-variable-id)

| (bind-syntaxes spec-variable-id ooo ...

spec-variable-id)

| (scope spec-or-ooo ...)

| [spec-or-ooo ...]

| (nest spec-variable-id ooo ... binding-spec)

| (import spec-variable-id)

| (export spec-variable-id)

| (export-syntax spec-variable-id spec-variable-id)

| (export-syntaxes spec-variable-id ooo ...

spec-variable-id)

| (re-export spec-variable-id)

ooo = ...

spec-or-ooo = binding-spec

| ooo

Binding specs declare the binding rules of a DSL’s forms. They allow us to control
the scope of bound variables and to check that programs are well-bound before
compilation. A binding spec is associated with a production and refers to spec
variables from the production.

Similar to syntax patterns and templates, syntax specs and binding specs have a
notion of ellipsis depth. However, all spec references in binding specs must have
the exact same ellipsis depth as their syntax spec counterparts. Ellipses in binding
specs are used to declare the scoping structure of syntax that includes sequences.

• For a spec-variable-id binding spec, if the specified sub-expression is
an identifier (the syntax spec would be something like x:my-var), then
the identifier is treated as a reference. If the specified sub-expression is

210 S Y N TA X - S P E C D O C U M E N TAT I O N

something else (the syntax spec would be something like x:my-expr), then
the resulting binding structure depends on the content of the sub-expression.
If a sub-expression of a production is excluded from its binding spec it is
implicitly added as this type of binding spec.

• (bind x) declares that the variable specified by x is bound in the current
scope. bind must be used inside of a scope and x must be specified with a
binding class in its syntax spec like x:my-var.

Example:

(syntax-spec

(binding-class my-var)

(nonterminal my-expr

n:number

x:my-var

(my-let ([x:my-var e:my-expr] ...) body:my-expr)

#:binding (scope (bind x) ... body)))

Notice how there are ellipses after the (bind x) since x occurred inside of
an ellipsized syntax spec.

• (bind-syntax x e) declares that the variable specified by x is bound to the
transformer specified by e. bind-syntax must be used inside of a scope, x
must be specified with a binding class in its syntax spec like x:my-var, and e
must be specified with an extension class in its syntax spec like e:my-macro.

Example:

(syntax-spec

(binding-class my-var)

(extension-class my-macro)

(nonterminal my-expr

#:allow-extension my-macro

n:number

(my-let-syntax ([x:my-var trans:my-macro]) body:my-expr)

#:binding (scope (bind-syntax x trans) body)))

• bind-syntaxes is similar to bind-syntax, except it binds multiple identi-
fiers.

Example:

(syntax-spec

(binding-class my-var)

A.2 R E F E R E N C E 211

(extension-class my-macro)

(nonterminal my-expr

#:allow-extension my-macro

n:number

(my-let-syntaxes ([(x:my-var ...) trans:my-macro])

body:my-expr)

#:binding (scope (bind-syntaxes x ... trans) body)))

Here, trans should evaluate to multiple transformers using values.

Note that the ellipses for x occur inside of the bind-syntaxes.

• scope declares that bindings and sub-expressions in the sub-specs are in a
particular scope. Local bindings binding specs like bind must occur directly
in a scope binding spec.

• [spec ...] is called a group, and it groups binding specs together. For
example, when we write

(my-let ([x:my-var e:my-expr]) body:my-expr)

#:binding (scope (bind x) e)

We could instead write

(my-let ([x:my-var e:my-expr]) body:my-expr)

#:binding [(scope (bind x) body) e]

Which adds that e is a sub-expression outside of the scope of the let. All
un-referenced syntax spec variables get implicitly added to a group with the
provided binding spec, so the former example is equivalent to the latter.

Ellipses can occur after a binding spec in a group.

• nest is used with nesting nonterminals. In particular, the first argument to
nest must be a spec variable associated with a nesting nonterminal. The
second argument is treated as the "base case" of the "fold".

Example:

(syntax-spec

(binding-class my-var)

(nonterminal my-expr

n:number

x:my-var

(my-let* (b:binding-pair ...) body:my-expr)

212 S Y N TA X - S P E C D O C U M E N TAT I O N

#:binding (nest b ... body))

(nonterminal/nesting binding-pair (nested)

[x:my-var e:my-expr]

#:binding (scope (bind x) nested)))

The nest binding spec sort of folds over the binding pairs. In this example,
it’ll produce binding structure like

[e1 (scope (bind x1) [e2 (scope (bind x2)

[... [en (scope (bind xn) body)]])])]

nest does not necessarily have to be used with a sequence.

Example:

(syntax-spec

(binding-class pattern-var)

(nonterminal clause

[p:pat e:racket-expr]

#:binding (nest p e))

(nonterminal/nesting pat (nested)

x:pattern-var

#:binding (scope (bind x) nested)

((~literal cons) car-pat:pat cdr-pat:pat)

#:binding (nest car-pat (nest cdr-pat nested))))

However, the first arguemnt of nest cannot have ellipsis depth exceeding
one.

• (import d) imports the bindings exported from the sub-expression speci-
fied by d. import must be used inside of a scope and must refer to a syntax
spec associated with an exporting nonterminal.

Example:

(syntax-spec

(binding-class my-var)

(nonterminal/exporting my-defn

(my-define x:my-var e:my-expr)

#:binding (export x)

(my-begin d:my-defn ...)

#:binding [(re-export d) ...])

(nonterminal my-expr

A.2 R E F E R E N C E 213

n:number

(my-local [d:my-defn ...] body:my-expr)

#:binding (scope (import d) ... body)))

The argument to import cannot have ellipsis depth exceeding one.

• (export x) exports the variable specified by x. x must refer to a syntax
spec variable associated with a binding class and export can only be used
in an exporting nonterminal. See import for an example of usage.

• export-syntax is like bind-syntax, except it exports the binding instead
of binding the identifier locally to the current scope. Like export, it can
only be used in an exporting nonterminal.

• export-syntaxes is like bind-syntaxes, except it exports the bindings
instead of binding the identifiers locally to the current scope. Like export,
it can only be used in an exporting nonterminal.

• (re-export d) exports all bindings that are exported by d. d must be
associated with an exporting nonterminal and re-export can only be used
in an exporting nonterminal. See import for an example of usage.

There are several other constraints on binding specs:

• Specs of different categories cannot occur within the same ellipsis. The
categories of specs are:

– refs+subexps include references, nest, and scope.

– binds include bind, bind-syntax, and bind-syntaxes.

– imports include import.

– exports include export, export-syntax, export-syntaxes, and
re-export.

For example, the spec (scope [(bind x) e] ...) is illegal since it mixes
refs+subexps and binds in an ellipsis.

• binds and imports can only occur within a scope

• exports cannot occur within a scope.

• Within a scope, there can be zero or more binds, followed by zero or more
imports, followed by zero or more refs+subexps.

• The second argument to nest must be refs+subexps.

214 S Y N TA X - S P E C D O C U M E N TAT I O N

• Spec variables can be used at most once. For example, (scope (bind x)

e e) is illegal.

A.2.1.6 Host interface forms

Host interface forms are the entry point to the DSL from the host language. They
often invoke a compiler macro to translate the DSL forms into Racket expressions.

(host-interface/expression

(id . syntax-spec)

maybe-binding-spec

pattern-directive ...

body ...+)

Defines a host interface to be used in expression positions.

Can only be used inside of a syntax-spec block.

An example from the miniKanren DSL:

(syntax-spec

...

(host-interface/expression

(run n:expr q:term-variable g:goal)

#:binding (scope (bind q) g)

#`(let ([q (var 'q)])

(map (reify q)

(run-goal n (compile-goal g))))))

This defines run, which takes in a Racket expression representing a number, a term
variable, and a goal, and invokes the compiler compile-goal to translate the DSL
forms into Racket.

https://github.com/michaelballantyne/syntax-spec/blob/b19d995f7fd8418ef2f867df9cdaff6283ca7280/tests/dsls/minikanren-rs2e/mk.rkt#L146-L152

A.2 R E F E R E N C E 215

(host-interface/definition

(id . syntax-spec)

maybe-binding-spec

#:lhs

[pattern-directive ...

body ...+]

#:rhs

[pattern-directive ...

body ...+])

Defines a host interface to be used in a definition context.

#:lhs runs before the right-hand-sides of definitions in the current context expand
and must produce the identifier being defined.

#:rhs runs after the left-hand-sides of definitions and must produce the Racket
expression whose value will be bound to the identifier (don’t emit the definition
syntax, just the syntax for producing the value).

Can only be used inside of a syntax-spec block.

An example from the miniKanren DSL:

(syntax-spec

...

(host-interface/definition

(defrel (name:relation-name x:term-variable ...) g:goal)

#:binding [(export name) (scope (bind x) ... g)]

#:lhs

[(symbol-table-set!

relation-arity

#'name

(length (syntax->list #'(x ...))))

#'name]

#:rhs

[#`(lambda (x ...)

(lambda (s)

(lambda ()

(#%app (compile-goal g) s))))]))

https://github.com/michaelballantyne/syntax-spec/blob/b19d995f7fd8418ef2f867df9cdaff6283ca7280/tests/dsls/minikanren-rs2e/mk.rkt#L129-L144

216 S Y N TA X - S P E C D O C U M E N TAT I O N

This defines defrel, which defines a relation. In the #:lhs, We record arity
information about the identifier before producing it. Since the left-hand-sides
all run before the right-hand-sides, even if there is mutual recursion, all arity
information will be available before any goals are compiled. Note that the #:rhs
produces a lambda expression, not a define.

(host-interface/definitions

(id . syntax-spec)

maybe-binding-spec

pattern-directive ...

body ...+)

Defines a host interface to be used in a definition context.

Can be used to produce multiple definitions.

Can only be used inside of a syntax-spec block.

An example from the PEG DSL:

(syntax-spec

(host-interface/definitions

(define-pegs [name:nonterm p:peg] ...)

#:binding [(export name) ...]

(run-leftrec-check! (attribute name) (attribute p))

#'(begin (define name (lambda (in) (compile-peg p in)))

...)))

Unlike host-interface/definition, the definitions are directly produced by
the host interface.

A.2.1.7 Defining macros for DSLs

(define-dsl-syntax name extension-class-id transformer-expr)

Defines a macro of the specified extension class. The transformer expression can
be any Racket expression that evaluates to a (-> syntax? syntax?) procedure,
so it is possible to use syntax-rules, syntax-case, syntax-parse, etc.

Example:

(define-dsl-syntax conj goal-macro

https://github.com/michaelballantyne/syntax-spec/blob/b19d995f7fd8418ef2f867df9cdaff6283ca7280/tests/dsls/peg/core.rkt#L113-L119

A.2 R E F E R E N C E 217

(syntax-parser

[(_ g) #'g]

[(_ g1 g2 g* ...) #'(conj (conj2 g1 g2) g* ...)]))

This defines a macro conj that expands to a goal in miniKanren.

A.2.1.8 Embedding Racket syntax

racket-expr

A nonterminal that allows arbitrary host language expressions. Such host expres-
sions are wrapped with #%host-expression during DSL expansion. This nonter-
minal does not support definitions.

racket-body

A nonterminal that allows arbitrary host language expressions and definitions. This
is an exporting nonterminal, so it must be explicitly mentioned in a binding spec,
usually with import.

Example:

(syntax-spec

(nonterminal my-expr

(my-let ([x:racket-var e:racket-expr]) body:racket-body ...+)

#:binding (scope (bind x) (import body) ...)))

racket-var

A binding class for host language bindings.

racket-macro

A binding class for arbitrary host language transformers.

A.2.2 Compiling Languages

A.2.2.1 Compiling references to DSL bindings within Racket code

2

2 §1.1.4 “Compilation” in the §1.1 “Basic Tutorial: State Machine Language” introduces the use of
reference compilers.

218 S Y N TA X - S P E C D O C U M E N TAT I O N

By default, Racket code cannot reference names bound with DSL binding classes.
To allow such references, specify a reference compiler for each class of bindings
that should be usable in Racket code. The reference compiler is a syntax transformer
that will be applied to compile the syntax including each reference.

When a reference appears in the head of a form, such as x in (x 1 2), the reference
compiler receives the entire form to transform. If the reference appears in a set!,
the reference compiler will be invoked if it is a set!-transformer?; otherwise
the expansion of the set! form results in an error.

In all cases, the reference identifier in the syntax provided to the reference compiler
is a compiled identifier.

Reference compilers can be specified in the #:reference-compiler option of a
binding-class form. For local control over reference compiler behavior, syntax
parameters are recommended.

(make-variable-like-reference-compiler reference-stx

[setter-stx])

Ñ set!-transformer?

reference-stx : (or/c syntax? (-> identifier? syntax?))

setter-stx : (or/c syntax? (-> syntax? syntax?)) = #f

Like make-variable-like-transformer, but works properly as a reference
compiler that receives compiled identifiers.

If reference-stx is syntax, references expand to that syntax. If reference-stx
is a procedure, it is called with the reference identifier to produce the reference’s
expansion.

If setter-stx is syntax, it should be syntax that evaluates to a procedure. The
procedure will be invoked with the new value for the variable.

If setter-stx is a procedure, it is called with the entire set! expression to
produce its expansion.

If setter-stx is not provided, references within set! position raise a syntax
error.

When a reference is used in the head position of a form such as (x 1 2), the
variable-like reference compiler ensures that the form is parsed as a function
application (not a macro call) and uses the reference-stx to expand only the
identifier in head position.

A.2 R E F E R E N C E 219

Here is an example for a match DSL where pattern-bound variables cannot be
mutated:

(syntax-spec

(binding-class pat-var

#:reference-compiler (make-variable-like-reference-compiler

(lambda (id) id)))

(host-interface/expression

(match target:racket-expr c:clause ...)

#'(let ([target-pv target])

(match-clauses target-pv c ...))))

Alternately we could provide immutable-reference-compiler as the reference
compiler, which behaves the same.

immutable-reference-compiler : set!-transformer?

A variable-like reference compiler that allows references but raises a syntax error
when identifiers are used in set! expressions.

References expand to their compiled identifier.

mutable-reference-compiler : set!-transformer?

A variable-like reference compiler that allows references as well as mutations via
set! expressions.

References expand to their compiled identifier.

(#%host-expression rkt-expr)

Racket subexpressions are wrapped with #%host-expression during DSL expan-
sion, which delays the expansion of the Racket subexpression until after compi-
lation, allowing context like syntax parameters to be established by the compiler,
which can be used by reference compilers.

A.2.2.2 Compiled identifiers vs surface syntax

The syntax of a DSL program in its initial, un-expanded, un-compiled state is
called the surface syntax. During the expansion of a host interface usage, before
your compiler is invoked, syntax-spec renames and compiles surface identifiers.
The resulting identifiers are called compiled identifiers and have unique names and
have special scopes according to your DSL’s binding rules.

220 S Y N TA X - S P E C D O C U M E N TAT I O N

Another concept that comes up when discussing identifiers and compilation is
positive vs negative space. This has to do with macro-introduction scopes. To
ensure macro hygiene, the Racket expander distinguishes between syntax that was
introduced by a macro and syntax that originated from elsewhere. To do this, it adds
an introduction scope to the macro invocation’s syntax, expands the invocation by
running the macro’s transformer, and then flips the scope, removing it from syntax
that has it and adding it to syntax that doesn’t.

During the expansion of the invocation, when a macro’s transformer is running, the
macro transformer will see this introduction scope on the incoming syntax. This
syntax is in negative space. After the scope is flipped off on the result, the syntax is
in positive space. It’s important to note that positive vs negative space depends on
the current introduction scope, as there may be many introduction scopes floating
around. It is also possible to manually flip this scope in a transformer to convert
syntax between positive and negative space.

A.2.2.3 Symbol collections

Symbol collections allow compilers to track information related to dsl variables.
Symbol collections expect to receive compiled identifiers in negative space.

Symbol tables

(symbol-table? v) Ñ boolean?

v : any/c

Returns #t if v is a symbol table, #f otherwise.

(in-symbol-table table)

Ñ (sequence/c identifier? (or/c syntax-datum? syntax?))

table : symbol-table?

Like in-free-id-table.

(mutable-symbol-table? v) Ñ boolean?

v : any/c

Returns #t if v is a mutable symbol table, #f otherwise.

(define-persistent-symbol-table id)

A.2 R E F E R E N C E 221

Defines a (mutable) symbol table for global use. For example, if your DSL has a
static type checker and you’re requiring typed identifiers between modules, you
can store each identifier’s type in a persistent symbol table.

Can only be used at the top-level of a module.

(local-symbol-table) Ñ mutable-symbol-table?

Creates a (mutable) symbol table for local use.

(syntax-datum? v) Ñ boolean?

v : any/c

Roughly, returns #t if v is something that could be the result of syntax->datum,
#f otherwise.

This includes pairs, vectors, symbols, numbers, booleans, etc.

(symbol-table-set! table

id

v

[#:allow-overwrite? allow-overwrite?]) Ñ void?

table : mutable-symbol-table?

id : identifier?

v : (or/c syntax? syntax-datum?)

allow-overwrite? : any/c = #t

Like free-id-table-set!. Errors by default when setting the value of an iden-
tifier already present in the table. Pass #:allow-overwrite? #t to allow this.
However, persistent symbol tables do not support this flag.

(symbol-table-ref table id failure) Ñ any/c

table : symbol-table?

id : identifier?

failure : any/c

Like free-id-table-ref

(symbol-table-has-key? table id) Ñ boolean?

table : symbol-table?

id : identifier?

222 S Y N TA X - S P E C D O C U M E N TAT I O N

Returns #t if table has an entry for id, #f otherwise.

(immutable-symbol-table? v) Ñ boolean?

v : any/c

Returns #t if v is an immutable symbol table, #f otherwise.

(immutable-symbol-table) Ñ immutable-symbol-table?

Creates an immutable, local symbol table. There are no persistent immutable
symbol tables.

(symbol-table-set table

id

v

[#:allow-overwrite? allow-overwrite?])

Ñ immutable-symbol-table?

table : immutable-symbol-table?

id : identifier?

v : (or/c syntax? syntax-datum?)

allow-overwrite? : any/c = #t

like free-id-table-set. Errors by default when setting the value of an identifier
already present in the table. Pass #:allow-overwrite? #t to allow this.

(symbol-table-remove table id) Ñ immutable-symbol-table?

table : immutable-symbol-table?

id : identifier?

like free-id-table-remove

Symbol sets

(symbol-set? v) Ñ boolean?

v : any/c

Returns #t if v is a symbol set, #f otherwise.

(in-symbol-set table) Ñ (sequence/c identifier?)

table : symbol-set?

A.2 R E F E R E N C E 223

Like in-free-id-set.

(mutable-symbol-set? v) Ñ boolean?

v : any/c

Returns #t if v is a mutable symbol set, #f otherwise.

(define-persistent-symbol-set id)

Defines a (mutable) symbol set for global use like define-persistent-symbol-table.

(local-symbol-set id ...) Ñ mutable-symbol-set?

id : identifier?

Creates a local (mutable) symbol set containing the given identifiers.

(symbol-set-add! s id) Ñ void?

s : mutable-symbol-set?

id : identifier?

Like free-id-set-add!

(symbol-set-member? s id) Ñ boolean?

s : mutable-symbol-set?

id : identifier?

Like free-id-set-member?

(immutable-symbol-set? v) Ñ boolean?

v : any/c

Returns #t if v is an immutable symbol set, #f otherwise.

(immutable-symbol-set id ...) Ñ immutable-symbol-set?

id : identifier?

Creates a (local) immutable symbol set containing the given identifiers. There are
no persistent immutable symbol sets.

(symbol-set-add s id) Ñ immutable-symbol-set?

s : immutable-symbol-set?

id : identifier?

224 S Y N TA X - S P E C D O C U M E N TAT I O N

Like free-id-set-add

(symbol-set-remove s id) Ñ immutable-symbol-set?

s : immutable-symbol-set?

id : identifier?

Like free-id-set-remove

(symbol-set-union s ...) Ñ immutable-symbol-set?

s : immutable-symbol-set?

Like free-id-set-union

(symbol-set-intersect s0 s ...) Ñ immutable-symbol-set?

s0 : immutable-symbol-set?

s : immutable-symbol-set?

Like free-id-set-intersect.

(symbol-set-subtract s0 s ...) Ñ immutable-symbol-set?

s0 : immutable-symbol-set?

s : immutable-symbol-set?

Like free-id-set-subtract.

A.2.2.4 Binding Operations

(compiled-identifier=? a-id b-id) Ñ boolean?

a-id : identifier?

b-id : identifier?

Returns #t if the two compiled DSL identifiers correspond to the same binding
from the surface syntax. Returns #f otherwise. Similar to free-identifier=?.

This is the equality used by symbol tables.

(free-identifiers stx

[#:allow-host? allow-host?])

Ñ (listof identifier?)

stx : syntax?

allow-host? : boolean? = #f

A.2 R E F E R E N C E 225

Get a DSL expression’s free identifiers (deduplicated).

Analysis of host expressions is currently not supported. When given syntax that
contains a host expression, the operation raises an error if allow-host? is #f, or
ignores that portion is syntax if allow-host? is #t.

(binding-identifiers stx

[#:allow-host? allow-host?])

Ñ (listof identifier?)

stx : syntax?

allow-host? : boolean? = #f

Get a DSL expression’s binding identifiers.

Analysis of host expressions is currently not supported. When given syntax that
contains a host expression, the operation raises an error if allow-host? is #f, or
ignores that portion is syntax if allow-host? is #t.

(alpha-equivalent? stx-a

stx-b

[#:allow-host? allow-host?]) Ñ boolean?

stx-a : syntax?

stx-b : syntax?

allow-host? : boolean? = #f

Returns #t if the two DSL expressions are alpha-equivalent, #f otherwise.

Analysis of host expressions is currently not supported. When given syntax that
contains a host expression, the operation raises an error if allow-host? is #f, or
ignores that portion is syntax if allow-host? is #t.

(subst stx target replacement) Ñ syntax?

stx : syntax?

target : syntax?

replacement : syntax?

Substitutes occurences of (expressions alpha-equivalent? to) target with
replacement in stx.

All arguments must be the result of DSL expansion, not just plain racket expres-
sions.

226 S Y N TA X - S P E C D O C U M E N TAT I O N

In the case that target is an identifier from a binding position, references will be
replaced by replacement.

Host expressions are left unchanged.

NOTE: In order to avoid hygiene issues, it may be necessary to re-expand using
nonterminal-expander after substitution.

(get-racket-referenced-identifiers [binding-class-id ...] expr)

Returns an immutable symbol set containing identifiers of the specified binding
classes that were referenced in racket (host) expressions in expr. If expr is not a
host expression, an exception is raised.

A.2.2.5 Expansion

(nonterminal-expander nonterminal-id)

nonterminal-id : identifier?

Produces an expander procedure for the specified nonterminal. This procedure ex-
pands macros down to the DSL’s core forms, binds identifiers in binding positions,
and can be configured to compile and rename identifiers. It does not expand host
expressions.

Expander procedure has contract (->* (syntax?) (#:should-rename?

boolean?) syntax?). The default behavior is not to re-compile and re-rename
identifiers. To do this, pass in #:should-rename? #t.

Can only be used with simple non-terminals.

Example:

> (module arithmetic racket

(require syntax-spec-v3)

(syntax-spec

(extension-class arithmetic-macro)

(nonterminal arithmetic

#:allow-extension arithmetic-macro

((~literal +) a:arithmetic b:arithmetic)

((~literal *) a:arithmetic b:arithmetic)

n:number))

(define-syntax sqr

A.2 R E F E R E N C E 227

(arithmetic-macro

(syntax-rules ()

[(sqr n) (* n n)])))

(begin-for-syntax

(define local-expand-arithmetic

(nonterminal-expander arithmetic))

(displayln (local-expand-arithmetic #'(sqr 1)))))

#<syntax:eval:1:0 (* 1 1)>

A.2.3 Release Notes

This package is periodically released as a package on the package server with a
versioned package and collection name, like syntax-spec-dev. The unversioned
package name syntax-spec is used for the current unstable development version.

Breaking changes may occur between differently-named versions. This page doc-
uments the history of breaking changes. Other new features are not mentioned
here.

The version used in the paper "Compiled, Extensible, Multi-language DSLs (Func-
tional Pearl)" was syntax-spec-v2.

Version 3

Binding specifications now require ellipses matching the ellipsis depth of pattern
variables in the syntax spec. See the PR description for more details.

With this change the new nest syntax accomplishes the behavior of the old nest

syntax when the first form is followed by ellipses and the behavior of the old
nest-one syntax when no ellipses are used.

Reference compilers are now specified as part of binding class declara-
tions, rather than with with-reference-compilers. If you previously used
with-reference-compilers to create reference compilers with contextual
behavior, you can typically use syntax parameters to accomplish the same with the
new design.

Version 2

Some forms were renamed:

https://pkgs.racket-lang.org/package/syntax-spec-dev
https://dl.acm.org/doi/10.1145/3674627
https://dl.acm.org/doi/10.1145/3674627
https://github.com/michaelballantyne/syntax-spec/pull/37]

228 S Y N TA X - S P E C D O C U M E N TAT I O N

Old name New name
recursive import

nonterminal/two-passnonterminal/exporting

Scopes in binding specifications are now indicated by the scope form rather than
{} curly braces.

Reference compilers are now invoked at application forms like (x y z) where x
is the DSL reference. Use make-variable-like-reference-compiler if you
only want to transform references in reference or set! positions.

	Abstract
	Acknowledgments
	Contents
	 Design
	1 Introduction
	1.1 Macros: An Imperfect Match for Language-Oriented Programming
	1.2 Thesis
	1.3 Contributions

	2 Programming with Multi-Language Macros
	2.1 Declaring a Multi-Language DSL
	2.1.1 A DSL Specification
	2.1.2 Programming in the Resulting DSL

	2.2 Extending a Multi-Language DSL
	2.3 Compiling a Multi-Language DSL
	2.3.1 Inserting Boundaries
	2.3.2 Optimizing in a Multi-Language

	3 Design Decisions
	3.1 DSL Fragments as Compilation Units Linked by the Host
	3.2 A Lightweight Metalanguage for Syntax and Binding
	3.3 A Language Workbench as a Library
	3.4 DSL Extensibility Via Macros and Host Interoperation
	3.5 Integrating Conventional and Multi-Language Macros

	4 Prior Work
	4.1 Macros
	4.2 Language Workbenches
	4.3 Binding Specification Languages
	4.4 Multi-language Semantics and Language Boundaries
	4.5 Embedding and Extraction

	 Implementation
	5 A Review of Hygienic Expansion with Binding as Sets of Scopes
	5.1 Binding as Sets of Scopes by Example
	5.2 A Recap of the Core Model of Binding as Sets of Scopes
	5.3 An API for Hygienic Expansion

	6 Hygienic Expansion for syntax-spec DSLs
	6.1 Separate Scope and Binding
	6.2 Nesting Binding

	7 Layering syntax-spec atop Racket's Conventional Macro System
	7.1 The Generated DSL Expander
	7.2 Integrating with Racket via a Reflective API

	8 Multi-Language Expansion: Integrating Host and DSL
	8.1 Hygiene for DSL Compilers
	8.2 Host Subexpressions and Cross-Language References
	8.3 Integrating with Host Definition Contexts
	8.4 Persisting Static Data in Host Modules
	8.5 Recording Information for the IDE

	9 Reflection: Hygienic Expansion and Binding Specifications
	9.1 Macro extensibility and expansion order
	9.2 Hygiene

	 Applications and Evaluation
	10 The miniKanren Optimizing Compiler
	10.1 Extension and Mixing Like a Shallow Embedding
	10.1.1 Extensibility
	10.1.2 Mixing DSL and Host-Language Code
	10.1.3 Host Code in DSL Extensions

	10.2 Optimizing Like a Deep Embedding
	10.2.1 Optimizations for miniKanren
	10.2.2 Extensions Get Optimized Too
	10.2.3 Optimizing at the Boundary with Racket
	10.2.4 Benchmarks and Results

	11 Parsing Expression Grammars
	11.1 PEGs as a Multi-Language DSL
	11.1.1 PEG Syntax as an Extension to Racket
	11.1.2 PEG Static Semantics
	11.1.3 PEG Compilation and Optimization
	11.1.4 PEG Macros

	11.2 Implementing the PEG DSL with syntax-spec
	11.2.1 Nesting Binding for Parse Variables
	11.2.2 The Left-Recursion Check
	11.2.3 Limitations of syntax-spec

	11.3 The Power that Comes With Extensible DSLs
	11.3.1 Layering DSLs
	11.3.2 Integrating with Other Components

	12 A Plethora of DSLs
	12.1 State machines
	12.2 Classes
	12.3 Command-line argument parsing
	12.4 TinyHDL
	12.5 Multi-Stage miniKanren

	13 Initial Community Adoption
	13.1 Domain-Specific Contract Languages
	13.2 Qi
	13.3 Lens Match
	13.4 Logical Student Language
	13.5 mini-Dusa

	14 Evaluation
	14.1 Expressiveness and Utility
	14.2 Concision
	14.3 Expansion Performance

	 Reflection
	15 Looking Back
	16 Looking Forward
	16.1 A Richer Connection to the IDE
	16.2 Replacing Conventional Macros Altogether
	16.3 DSLs for Domain Experts
	16.4 Reasoning and Verification
	16.5 Beyond the Racket VM
	16.6 Scaling Up to Mainstream Host Languages

	 Bibliography
	A Syntax-Spec Documentation
	A.1 Tutorial
	A.1.1 Basic Tutorial: State Machine Language
	A.1.2 Advanced Tutorial: Simply Typed Lambda Calculus
	A.1.3 Advanced Tutorial: A Compiler with Transformative Passes
	A.1.4 Advanced Tutorial: An Interpreted Language

	A.2 Reference
	A.2.1 Specifying Languages
	A.2.2 Compiling Languages
	A.2.3 Release Notes

