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ABSTRACT

Contracts empower programmers to articulate specifications concern-
ing the behavior of components. In contrast to many other forms of
specification, contracts are essentially written using ordinary code.
Consequently, they can perform effects. To the sympathetic, this ca-
pability is viewed as neither useful nor harmful in practice. To the
skeptic, it is questionable and potentially dangerous. Rare are those
who see a need for effectful contracts. Over the past fifteen years there
has been a slow but steady stream of publications that present the
design of various effectful contracts, not out of whimsical desire, but
out of necessity. Ignoring effectful contracts entirely, or treating them
as an exotic curiosity, is no longer justified.

This dissertation is the first systematic investigation of effectful con-
tracts, showing that they can be used as a principled foundation to
build expressive high-level specification languages. In support of this
thesis, my dissertation contributes both theoretical and practical re-
sults. On the theory side, I formalize the semantics of effectful higher-
order contracts that compose reliably and extend it to a featureful con-
tract system that provably does not interfere with host programs. On
the practice side, I develop trace contracts that enforce multi-call con-
straints and show how they can serve as a compilation target for high-
level specification languages. These contributions are buttressed by a
variety of evidence: formal models, proofs, prototypes, shipped soft-
ware, benchmarks, case studies, and interviews. Drawing from this
breadth of evidence, my dissertation seeks to establish that, rather than
being an oddity or a nuisance, the ability to perform effects is a unique
advantage of contracts among the many forms of specification.
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WHY EFFECTFUL CONTRACTS?

Behavioral contracts bring many benefits to software developers. A
contract describes the promises a library makes about exported val-
ues and the obligations it imposes on uses. In other words, a contract
is an agreement between modules about values that flow from one to
the other. These agreements are specified using boolean-valued asser-
tions from the host language that can be enforced at run time. Since
they are executable, contracts provide a form of evergreen documen-
tation for a library’s interface.

As a specification medium, contracts confer numerous advantages.
Because they are mostly written using ordinary code, the learning
curve for contracts is a gentle slope. Once authored, contracts help
programmers locate bugs by raising an exception when the system
exhibits a violation of its specification. The error message in these
exceptions includes both a witness to the violation and blame informa-
tion pointing to the component that broke its side of the contract. But
expressing specifications as ordinary code invites a question. Should
contracts be free of side effects?

In practice, nearly all contracts programmers write are pure, even
though API documentation often contains informal constraints that
could be enforced with effectful contracts. Programmers may be reluc-
tant to turn these informal constraints into contracts because, while
most contract systems permit effectful contracts, none provide dedi-
cated linguistic support for them. My dissertation aims to narrow this
gap by making effectful contracts a standard part of the contract toolkit.

1.1 THESIS

If the philosophy of contracts is that specifications are code, I propose
taking this position to its logical conclusion. Specifications are code
that can perform effects. In particular, my thesis is:

Effectful contracts can be used as a principled foundation to build
expressive high-level specification languages.

Justifying this thesis requires being precise about what it means. A
principled contract formally guarantees reasonable behavior; contracts
should not be able to arbitrarily affect a program’s evaluation. A foun-
dational contract system is suitably generic, i.e., it supports a diverse
array of mechanisms. An expressive specification language copes with
complex properties that actually call for expressive power beyond
pure boolean expressions. A high-level specification language allows



1.2 CONTRIBUTIONS

programmers to state properties concisely, without leaking low-level
enforcement details involving effectful operations.

An easy way to understand the thesis is by example. Consider the
HasNext property that Java programmers must respect when they use
an iterator: each call to next must follow a call to hasNext [116]. Con-
tracts enable the developer of an interface to state such specifications
and attach them to all implementations.

(provide
(contract-out [an-iterator-object has-next/c]))

(define has-next/c
(object-trace/c
#:satisfies (re (star (seq 'has-next (opt 'next))))
[has-next (->m boolean?) 'has-next]
[next (->m any/c) "'next]))

(define an-iterator-object
— definition of the iterator —)

Figure 1.1: Checking the HasNext Property

Figure 1.1 shows a module that exports an iterator object and, in
doing so, attaches a contract that concisely states the HasNext prop-
erty with the regular expression (hasNext,next?)* over an alphabet
of method names. Using a concise notation, here regular expressions,
clarifies the developer’s intent, while permitting the automated con-
struction of reasonably efficient dynamic checks. These checks rely on
mutation to track the current state of the automaton underlying the
regular expression.

1.2 CONTRIBUTIONS

In the sciences, defense of an idea demands evidence. In programming-
languages research, legitimate evidence comes in many forms. This dis-
sertation is structured around four kinds of evidence to support the
thesis: theoretical, constructive, practical, and empirical.

THEORETICAL Part I considers whether effectful contracts can be
principled. It turns out that the traditional and widely used model
of higher-order contracts is incompatible with effects. Chapter 3 pro-
vides a new semantic substrate for higher-order contracts that perform
effects consistently. Building on that model, Chapter 4 shows the de-
sign of an effectful-contract mechanism, based on effect handlers, that
satisfies an erasure theorem. Roughly speaking, erasure says that the
only possible impact of contracts on program execution is raising an
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exception. Chapter 5 describes the design and formal semantics of a
particularly useful kind of effectful contract, called a trace contract.

consTRUCTIVE Part II considers whether a principled design of ef-
fectful contracts can be realized. Chapter 6 discusses an implementa-
tion of effect-handler contracts in an idealized language called Effect
Racket. While helpful to validate the feasibility of a design, the imple-
mentation is not yet suitable for real-world use. Thus, Chapters 7 to 9
present a trio of effectful contracts that are extensions to, or modifi-
cations of, Racket’s existing contract system. Coming full circle, these
three effectful contracts can be expressed as macros in Effect Racket.

prACTICAL Part [II demonstrates some affordances needed to make
effectful contracts practical for software developers. One challenge is
that, in their raw form, trace contracts are still too low level. Chapter 10
examines several case studies that use declarative languages, such as
temporal logic, to express specifications at a higher level of abstraction.
These specifications can then be compiled into trace contracts. One re-
quirement of any new contract combinator is that it composes with ex-
isting contracts in the system. Chapter 11 illustrates the composability
of trace contracts by combining them with channel contracts to enforce
protocols in concurrent systems.

EMPIRICAL Part IV aims to answer, with data, whether developers
might actually be able to program with effectful contracts. Chapter 12
describes the performance overhead of some effectful contracts and
shows that the lightly optimized Racket implementations exhibit mod-
est overhead. Chapter 13 reports on an effort to bring effectful contracts,
and contracts generally, into the classroom. First-year students with a
single semester of prior programming experience were able to use trace
contracts to express fairly sophisticated temporal invariants.

In sum, this dissertation furnishes a broad spectrum of evidence
seeking to establish that effectful contracts can be used as a principled
foundation to build expressive high-level specification languages.



BACKGROUND

In the late 1960s, software engineering was in a crisis. With compu-
tational power accelerating exponentially [103] one might expect that
programmers’ ability to deliver complex software would improve at
the same pace. It did not. Researchers began to ponder why. At the
first NATO software engineering conference, convened specifically to
understand this question, Mcllroy [99] proposed a component mar-
ketplace that could supply high-quality, interchangeable, and config-
urable modules to deploy across different systems. A few years later,
Parnas [120] recognized that, to be practical, such components would
need to be accompanied by formal interface specifications.

Eiffel [100] was the first programming language to put enforceable
interface specifications front and center. Contracts in Eiffel allow pro-
grammers to express preconditions that a caller must satisfy and post-
conditions that the result is guaranteed to satisfy. If a method’s pre-
condition fails, it is the caller’s fault; if the postcondition fails, it is the
callee’s fault. For Meyer, the contract system undergirds an entire soft-
ware design philosophy that he calls design by contract [101].

set second (s: INTEGER)
require
valid argument for second: 0 <= s and s <= 59
do
second := s
end

Figure 2.1: Contracts in Eiffel

Figure 2.1 shows an example specification from Eiffel’s documenta-
tion of a method that sets the second field of a clock object. By monitor-
ing the precondition, Eiffel’s contract system can signal an error when
control enters the method—not after second has been set and retrieved
elsewhere. Notice how Eiffel’s require keyword cleanly separates the
specification from the method body.

Inspired by Eiffel, Findler and Felleisen [56] generalized software
contracts to modern higher-order languages. They implemented a
higher-order contract system for Racket |52, 59], supplying program-
mers with notation similar to that of type systems. The contract system
automatically manages blame information, ensuring that the appro-
priate module is named if a contract exception is raised.
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(provide
(contract-out
[find-fixpoint (-> (-> real? real?) real? real?)]))

(define (find-fixpoint f x)
(define y (f x))
(if (= x y) x (find-fixpoint f y)))

Figure 2.2: Contracts in Racket

Figure 2.2 shows a higher-order contract for the find- fixpoint func-
tion. With the -> contract, the function argument f of find-fixpoint
is wrapped in a proxy that checks its precondition (real?) and post-
condition (real?). Blame management is complex for higher-order
functions because -> is contravariant in its domain, reversing respon-
sibility for a potentially faulty value. Without contracts, a programmer
who wants to enforce this specification would be forced to pollute
find-fixpoint with defensive checks—obscuring its implementation.

(define (find-fixpoint unsafe-f unsafe-x)

(define (check-real->real g)

(A (x)
(check-real (g (check-real x)))))

(define f (check-real->real unsafe-f))

(define x (check-real unsafe-x))

(define y (f x))

(check-real (if (= x y) x (find-fixpoint f y))))

Figure 2.3: Contracts as Ordinary Code

Figure 2.3 shows (approximately) how the find-fixpoint contract
may be enforced. Notice how the -> contract on the higher-order in-
put f is replaced with a proxy that checks the precondition and post-
condition. The underlying contract system generates all these checks
automatically. Programmers should never read, let alone write, such
complex code. Contract systems eliminate these awkward and repeti-
tive patterns, allowing programmers to focus on the actual code.

The remainder of this chapter sets the stage for the theoretical part of
the dissertation, establishing conventions that will be used throughout
(Section 2.1) and reviewing the standard semantics [38, 41] of depen-
dent higher-order contracts (Section 2.2).



2.1 A FUNCTIONAL BASE

2.1 A FUNCTIONAL BASE

This section describes a programming language, dubbed run, based on
the untyped call-by-value A-calculus [122]. All the models developed
in this dissertation will be built atop rFun.

Exproeu:=x|f|ee|b]|ifeee
Lam > f,g 1= Ax.e
Bool 5 b u= tt | ff

Var 3 x,y,z

Figure 2.4: Core Syntax of FuN

Figure 2.4 defines the core syntax of Fun. The core syntax defines
a set of expressions that includes variables, functions, applications,
booleans, and conditionals.

‘ FUN (DYNAMIC) ‘

Expr > e i= ... | errf

Invsiz=vw |[v¢lLam]|
CtxoE,F:=0|Ee|vE|ifEee
Valsv,wu=f|Db

Lab 3 j,k,1

Figure 2.5: Dynamic Syntax of Funx

Figure 2.5 defines the dynamic syntax of run. The dynamic syntax
serves to help specify FuN’s reduction relation and is not written by
programmers. Side conditions are indicated within | | brackets. Ex-
pressions are extended with errors that have two labels: j names the
component that specified the invariant and k names the component
that violated the invariant. For now, the specifier is always labeled £
(the language runtime) and the violator is always labeled P (the pro-
gram itself). The remaining sets are invalid expressions that should
produce errors, evaluation contexts that stipulate left-to-right evalua-
tion order, and values.

Figure 2.6 defines the semantics of FuN via a notion of reduction ().
A notion of reduction [12] relates a redex (an expression that can re-
duce) to its contractum (the expression that it reduces to). The > rules
specify reduction for applications, conditionals (where all values ex-
cept ff are treated as true), and invalid expressions. Every invalid ex-
pression defined by Inv reduces to an error.



2.2 THE CLASSIC INDY MODEL

for FUN for FUN

LAM-APP (Ax.e)v = e[v/x] LIFT E[e] — E[e’

) o /(
le )
wrr  ifverer e [v+ ] BRR Elerrf]—— errf [ =[]

J ) L

(e >
IF-FF if ffeier > ef

ERR-INV i=er rz

Figure 2.6: Semantics of Fun

The notion of reduction alone does not suffice to define an evalua-
tor because it does not consider expressions in context [48]. Thus, the
notion of reduction must be pushed syntactically through the set of
evaluation contexts to form a reduction relation (——). As shown in
the LiFT rule, moving from a notion of reduction to a reduction relation
requires an evaluation context E to deterministically choose a redex
within a larger expression. Raising an error, which is an effect, is spe-
cial because it discards the context. This behavior, given by the err rule,
models how an uncaught exception halts program execution.

Ans>a:=b|?]|errf

‘eval : Expr — Ans‘ for FuN ‘ |-]:Val — Ans‘ for FuN

eval(e) = [v] er—*v ] = v v € Bool

errf er—*errf ?

; otherwise

Figure 2.7: Evaluator for Fun

Based on the reduction relation, Figure 2.7 defines the evaluator for
FUN, relating programs to their final result. Evaluation is defined by
the reflexive-transitive closure of the reduction relation (——*). Fol-
lowing Plotkin [122], the evaluator masks non-atomic values with ?
(an opaque token). This behavior matches most REPLs, where func-
tion values are printed as an opaque token.

2.2 THE CLASSIC INDY MODEL
. k1
Expr>e = ... | mon;”" e e le=f

Figure 2.8: Core Syntax of INDY



2.2 THE CLASSIC INDY MODEL

Extending run, Figure 2.8 defines the core syntax for npy, a model of
dependent higher-order contracts [ 38, 41]. The core syntax extends Fun
with two new elements: monitors mo n}(’l ec e; and dependent function
contracts e = f.

A monitor is used to attach a contract to a value. So, mon}“ e. es at-
taches the contract produced by e, to the value of e;. The value of e,
i.e., the value to be protected by the contract, is dubbed the subject of
the contract. Monitors also come with labels naming the parties that
agreed to the contract: the contract-defining module j, the server mod-
ule k, and the client module 1. In Racket, all contract attachment forms
expand into a single primitive attachment form, similar to mon, anno-
tated with the appropriate blame labels.

A dependent function contract describes properties of functions
where the codomain contract depends on the argument to the subject
function. For e = f, the contract system ensures f is applied to the
argument of the subject function and expects f to return a codomain
contract constraining the output. Ordinary function contracts, written
eq — e, are macro expressible [47] as eq = (A_.e.).

In addition to dependent function contacts, all other values can be
used as contracts in this model. When used as a contract, a function
checks first-order properties of the subject. In Racket, these checks cor-
respond to predicates. Booleans correspond to trivial contracts where
tt permits any value and ff forbids all values. In Racket, these con-
tracts correspond to any/c and none/c, respectively.

1

‘INDY (DYNAMIC) ‘ extends FuN

Ctx > E,F o= ... | mon}(’lE e | mon}{’lv E|lE=>A

Valsvyw = .. |v=> o

Figure 2.9: Dynamic Syntax of iINDy

Figure 2.9 shows the dynamic syntax of inDpy, extending the set of
evaluation contexts and values. These definitions are entirely standard.
Because all values can be used as contracts in this model, there is no
need to extend the set of invalid expressions.

Here is an example program with a contract:

mon o™ (tt = Ax.Ay.x = y) (Az.2).
This contract specifies the behavior of the identity function (Az.z). Sup-
pose this function was applied to 0. Since the domain contract is tt,
every argument, including 0, is accepted. When the function returns,
the output value is checked against the codomain contract Ay.0 =y,
ensuring that the output is equal to zero.

Programs in the theoretical part of this dissertation may use language features that
are not formally defined. Their meaning should always be clear from context.



2.2 THE CLASSIC INDY MODEL

for INDY

kL .
MON-BOOL mon” bv = if bv err¥
Kl Kl
MON-LAM mon;”" f v > mon,” (fv)v
Kl 1 .
MON-ARR mon,” (w=g)f>A.letx; = mon].’] wxin

Lk .
let x¢ = monj’ wxin

mon*" (g x;) ( xu)

k,l k 9 ¢
ERR-ARR mon,” (w=g)v > err; (v ¢ Lam]
Figure 2.10: Semantics of INDY

Figure 2.10 shows the notion of reduction for iINDy. Because INDY ex-
tends FuN, the notion of reduction extends that of Fun—indicated by
ellipses. The four additional rules describe checks performed by each
kind of contract. For booleans, the contract succeeds or fails, respec-
tively. For a function f, the result of applying f to the subject is then
used as the new contract. If f is a predicate, this rule corresponds ex-
actly to a first-order check because tt and ff are themselves contracts.

While f may return a boolean, there is nothing that forces it to be
one. In particular, it could return another function. This process can go
on repeatedly until it reaches a base case (i.e., a boolean). A contract
following this pattern is called a cascading contract, and can be used to
combine arbitrary first-order checks with higher-order contracts:

Af.if (arity f=1) (int? — int?) ff.

This cascading contract checks a first-order constraint, namely that the
subject has arity one. If successful, the higher-order contract int? —
int? protects the subject. Otherwise, the contract fails eagerly.

Finally, MON-ARR describes the indy semantics of dependent function
contracts [41]. The key insight is that the contract itself can be inconsis-
tent and therefore must be checked. Consider the following contract:

(bool? — bool?) = Af.f 0.

While the domain states that the input is a function over booleans, the
contract itself violates that assumption by applying f to 0 when gener-
ating the codomain contract. In this case, INDY signals an error blaming
the contract itself. To do so, MON-ARR protects the argument twice: once
where the client label is j (bound to x;) and once where the client label
is k (bound to xx).> These values are provided to the codomain con-
structor g and the subject f, respectively, ensuring that any eventual
blame information points to the responsible party.

Variables present on the right-hand side of a rule that are not present on the left-hand
side are assumed to be fresh in the sense of Barendregt’s hygiene convention [12].



Part1

THEORETICAL

Three formal models are presented in this part: (1) a modi-
fication of INDY where effectful contracts compose reliably;
(2) amodel of effect-handler contracts that unifies the land-
scape of effectful contracts; and (3) a model of trace con-
tracts for enforcing multi-call constraints. These models are
the foundation upon which later implementations rest.



A FOUNDATION FOR EFFECTFUL CONTRACTS

As is, INDY cannot reliably accommodate contracts that perform effects.
An effectful contract, when used as the domain of a function, has its
effects duplicated. Consider the following example:

mon. ™ (Ax.print x ; tt) = Ax.Ay.x = y) (Az.z).
Evaluating the domain contract performs an effect. As the following re-
duction sequence demonstrates, where redexes are highlighted, print
is executed twice under the INDY semantics:
(monei>™M (Ax.print x ; tt) = Ax.Ay.x = y) (Az.z)) 0
The monitor expression must produce a proxy, via MON-ARR,

that checks the arguments against the domain contract and
the return value against the codomain contract.

lib,main main,ctc

—  (Ax.mong. ((Ax.Ay.x =y) (mon ¢, (Ay.printy; tt) x))

main,lib

((Az.z) (mon¢. (Ay.printy; tt)x)))0
The proxy (where x; and x; are inlined for brevity) is applied
to the argument 0.

libymain main,ctc

——  MON . (Ax.Ay.x =y) (mon ;. (Ay.printy;tt)0))
(Az.z) (mon™iM" Ay .print y ; tt) 0))
To produce a codomain contract, the argument is first
checked (by mon-LaM) against the domain contract with the
contract-defining party (ctc) as the client label. At this point
in time, 0 is printed.
—t mont ™" (Ax.Ay.x =) 0)
(Az.z) (mon™iM" Ay .print y ; tt) 0))

Once the argument is checked, then the codomain contract
is constructed.

—  mont ™ (Ay.0 = y) (Az.z) (mon™i™“® (Ay.printy;tt)0))

ctc ctc

The argument has to be checked against the domain contract
(by Mmon-LaM) once more. This time the client label is lib.
Again, 0 is printed.

11



A FOUNDATION FOR EFFECTFUL CONTRACTS

—t monie™ " (Ay.0 =y) ((Az.z) 0)

Now the subject is applied to 0. Since the subject is the iden-
tity function, it returns 0.

—  mong™ " (Ay.0 =y) 0

The returned value is checked against the generated
codomain contract. In this case, the contract is satisfied and
can be discharged.

—t 0

Effect duplication is a major obstacle for building principled effectful
contracts. To understand the source of the problem, consider the right-
hand side of the MmON-ARR rule from INnDY:

U
Ax.let x; = mon.”

j WX in

let xx = mon}‘kw X in
kL
mon,” (g x5) (f xx).

There are two monitor expressions that contain w, differing only in
their client label. If w performs an effect, it happens twice. These moni-
tors cannot be collapsed into a single monitor because the client labels
on x; and x; must differ.* A new semantics for higher-order dependent
contracts is needed to accommodate effects.

The key observation that resolves the dilemma is that vy collapses
interception time and crossing time. Interception time occurs when the
contract system intercepts a value from the monitored program, i.e.,
when a value flows through a contract interception point. Crossing
time occurs when an intercepted value moves to another component.

Concretely, consider a proxy created by the contract w = g. Every
time the proxy is applied it must perform two tasks related to the ar-
gument: (1) w must be used to check first-order properties of the argu-
ment; and (2) if w is a higher-order contract, proxies must be created
for every consumer of the argument. Interception time corresponds to
when task (1) occurs and crossing time corresponds to when task (2)
occurs.” The iNpDy language has a single monitor form that performs
both tasks. Splitting the three-labeled monitor into two separate forms
allows greater control over when contract effects happen. Effects occur
when one of the forms evaluates but not when the other evaluates.
More precisely, alternative semantics violate desirable metatheoretic properties of the
contract system. Eliminating the x; monitor yields a “lax” contract semantics that vi-
olates complete monitoring [43]. Reusing xi for the argument to g and f yields a
“picky” contract semantics that violates blame correctness [41].

While this claim is usually true, there are exceptions. The unconstrained-domain->

contract in Racket makes no demand on function arguments. Because such a contract
is guaranteed never to blame clients, its proxy can be constructed at interception time.

12



A FOUNDATION FOR EFFECTFUL CONTRACTS 13

CONTRACT (CORE) ‘ extends FuN

Exprse = ... | mon}“le ele=f
Figure 3.1: Core Syntax of coNTRACT

Figure 3.1 defines the core syntax of cONTRACT, an extension of FUN
that resolves the effect duplication problem with mpy. The core syn-
tax is identical to that of INDY from Figure 2.8. However, the dynamic
syntax and semantics differs substantially.

CONTRACT (DYNAMIC) ‘ extends Fun

Expr > e = .. | monfee | grdfvv|e-l
Inv>1i:a=..]| mon}"lwv (w ¢ Con§
Conscu=f|ble=f
Ctx 3 E,Fu=..|monfEe|monfvE|E-1|E=f

Val 3 v,w = ... | grd}‘vv |v=f

Figure 3.2: Dynamic Syntax of coNTRACT

Figure 3.2 defines the dynamic syntax of contracT. The dynamic

syntax adds three constructs to Fun: two-labeled monitors mon}‘ e e,

guarded values grd}cw v, and label applications e - 1. Reduction of
mon}‘ w v corresponds to interception time, when first-order properties
of the subject are checked. If the contract performs effects, it does so
at interception time. Successful evaluation of a two-labeled monitor
yields a guarded value that is waiting for a client label in order to
produce a proxy. Reduction of (g rd}‘w v) - 1 corresponds to crossing
time and creates a proxy of v for client 1. Constructing a proxy does
not perform effects.

Figure 3.3 displays the notion of reduction for contract. The first
rule, MmoN, decomposes a three-labeled monitor into a two-labeled mon-
itor applied to the client label. The remaining rules are responsible
for performing the first-order checks of each contract and producing
guarded values upon success. Compared to the iNDy rules shown in
Figure 2.10, the action of moN-BooL is now divided between moN-BooL
and Gro-1T. The same goes for MON-ARR; it is now divided between MmonN-
ARR and GRD-ARR.

In Gro-TT, there is no need for a proxy, so the subject is produced di-
rectly. A proxy is needed for function contracts. In contrast to INDy, the
proxy on the right-hand side of GrRD-aARR can now exploit the two stages
of contract checking. Instead of two monitors containing w, there is
now only one, with its result bound to xg4. Effects caused by checking
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for CONTRACT

MON mon}“‘1 ec s > (monf ec es) - 1
MON-LAM mon¥ f v = mon (f v) v
MON-BOOL mon*bv - if b (g rd}{ ttv)errs
MON-ARR mon¥ (w = g) f - grd%‘ w=g)f
ERR-ARR mon¥ (w = g)v = errf v ¢ Lam|
GRD-TT (g rd}< ttv)-1>v
GRD-ARR (g rd}< w=g)f)- 1> A.letxg = mon}w x in

letxj =%xg-jin
let xx =xg-kin

K,
mon;”" (g %) (f xx)
Figure 3.3: Semantics of CONTRACT

w occur only once (while obtaining the value for x4). In the scope of
this let binding, two proxies are produced through label application
of x4 to j and k. Remember, constructing proxies is a pure operation.

To see the semantics in action, consider how conTracT evaluates the
example from earlier:

lib,main

(mon ¢ ((Ax.print x; tt) = Ax.Ay.x =y) (Az.z)) O

A three-labeled monitor immediately decomposes (by mon)
into a two-labeled one, applied to the client label.

—  ((mon® ((Ax.print x ; tt) = Ax.Ay.x =) (Az.z)) -main) 0

The two-labeled monitor produces (by MON-aARR) a guarded
value that is ready to construct a proxy.

—  ((g rditii’ ((Ax.print x ; tt) = Ax.Ay.x = y) (Az.z)) - main) O

Applying the guarded value to a client label, via GRD-ARR,
produces a proxy.

—  (Ax. let xg = monf3" (Ax.print x ; tt) x in
mongee ™" (Ax.Ay.x = ) (xq - ctc)) (Az.2) (xg - Lib))) O

The proxy (where x; and xy are inlined for brevity) is applied
to the argument 0.

14
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—  let xg = monf2" (Ax.print x; tt) 0 in

rnonlib,main (Ax.Ay.x =) (Xg - ctc)) ((Az.z) (Xg - 1ib))

ctc

Evaluation of the two-labeled monitor (by MoN-LAM) prints
out 0.

"t let xg = grdfee tt 0 in

lib,main

mon ;. (Ax.Ay.x = y) (xq - ctc)) ((Az.z) (xg - Lib))
The guarded value is substituted into the function body.
— moni ™ (Ax.Ay.x =1y) ((grd™i"tt 0) - ctc))
(Az.z) ((grdfse" tt 0) - Lib))

Evaluation of each guarded value yields 0 (by Grp-TT) but
does not print.

T monl o™ (A\y.0 = y) ((Az.2) 0)

The subject is applied to the argument and then the final re-
sult is checked.

—T 0

Crucially, print is executed just once under conTRaAcT—when the two-
labeled monitor is reduced. Creating proxies from guarded values,
which occurs twice, does not print.



EFFECT-HANDLER CONTRACTS FORMALLY

Existing contract systems can deal with a wide range of functional
properties, but none have the expressive power to systematically en-
force properties that require contract-level effects. For example, a li-
brary may wish to guarantee that a function is called at most once, ne-
cessitating a piece of contract-local state [143]. While the model from
Chapter 3 is a good starting point for studying effectful contracts, sim-
ply adding primitive effects to it easily runs afoul of desirable metathe-
oretic properties.

Effect-handler contracts are a uniform mechanism for expressing
well-behaved effectful contracts. The formal model of effect-handler
contracts (Sections 4.2 to 4.4), building atop conTrACT, consists of a
language where all effectful operations are expressed in terms of ef-
fect requests and handlers [123], not as primitive operations. In the
context of such a language, effect-handler contracts suffice to check a
broad class of constraints while satisfying the critical erasure property
(Section 4.5). Intuitively, erasure means that contracts cannot interfere
with a program’s computation, other than signaling a contract error
and halting execution. Consequently, contracts that are expressible as
effect-handler contracts also satisfy erasure.

4.1 EXAMPLES

Before diving into the formal model, it will be helpful to get a taste
of effect-handler contracts. This section introduces effect handlers and
effect-handler contracts with synthetic examples written in the Effect
Racket language. Aside from regular contracts, there are four critical
features of Effect Racket: main-effect handlers, main-effect contracts,
contract-effect handlers, and contract-handler contracts.

HIGHER-ORDER CONTRACTS The RSA cryptographic algorithm is
widely used for secure communication [127]. Crucially, RSA relies on
the difficulty of factoring prime numbers.

Figure 4.1 shows an RSA-key-generating function with contracts for
the primality constraint. The rsa function is higher-order, transform-
ing a prime-generating function into a key-generating function. If the
contract system discovers a violation, an error is signaled identifying
the contract and blaming the responsible party.*

For background reading, Chapter 7 of the Racket Guide [58] gives a gentle introduc-
tion to contracts in Racket. Chapter 8 of the Racket Reference [59] contains a detailed
description of Racket’s contract system.

16



4.1 EXAMPLES

(provide
(contract-out
[rsa (-> prime-gen/c key-gen/c)]))

(define prime-gen/c (-> (values prime? prime?)))
(define key-gen/c (-> (values pub-key? priv-key?)))
(define (rsa pg) — implementation —)

Figure 4.1: RSA Key Generation

Given an invalid pg function (i.e., one that does not always generate
primes), the contract system can identify the source of the violation:

> ((rsa (A () (values 3 4))))
rsa: contract violation
expected: prime?
given: 4
blaming: top level

MAIN-EFFECT HANDLERS A key requirement of RSA is that the
prime numbers used to generate the keys are random. To generate
random primes, a program must be able to acquire ordinary random
numbers. A pseudorandom number generator (PRNG) is a determin-
istic algorithm for generating numbers with properties similar to truly
random numbers. The interface to most PRNGs is effectful: generating
a random number causes the PRNG’s internal state to change.

(effect random ())

;3 with-random: (— A) — A
(define (with-random thk)
(with ((random-handler (seed->state INITIAL-SEED)))
(thk)))

;3 random-handler: State — Handler
(define (random-handler st)
(handler
[ (random)
(with ((random-handler (state-next st)))
(continue* (state->number st)))]))

Figure 4.2: Main-Effect Handlers in Racket

Figure 4.2 shows how a PRNG can be implemented using effect han-
dlers. From a programmer’s perspective, effect handlers generalize ex-
ception handlers by allowing a handler to resume evaluation where an

17
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exception was raised. Resumption is enabled by multi-shot delimited
continuations [46]. Generalizing in this way allows effect handlers to
simulate a variety of effectful operations—not just exceptions.

First, the effect form declares an effect called random that takes no
arguments. Think of an effect declaration as similar to declaring an
exception type that can be raised by applying the declared effect as a
function. So, (random) searches the context for the innermost matching
handler and invokes it to perform the effect.

An effect handler is installed via the with form, as seen in the
with-random function. When given a thunk, with-random runs the
thunk in a context where random-number generation is available.
To offer random-number generation, with-random applies the thunk
inside a with form that contains the random-handler effect handler,
initialized with a PRNG state created from INITIAL-SEED. When given
the state of a random-number generator, the random-handler function
returns a handler that interprets requests for random generation.

The handler form, modeled after match, returns a main-effect handler.
When an effect request matches the given pattern, originating from the
main code of a program (i.e., not contract code), the associated arm is
executed. Effect requests that do not match are propagated further up
the context. If no matching handler is found in the context, then an ex-
ception is raised. The handler returned from random-handler services
random effects by applying the continuation (bound to continue*) to
the next random number (extracted from the PRNG state). This exam-
ple program generates two random numbers:

> (with-random (A () (list (random) (random))))
'(0.7769506309660458 0.5790039700066731)

Typically, effect handlers come in two flavors: deep [23, 123] and shal-
low [77]. A deep continuation resumes with the same handler installed.
A shallow continuation resumes without the handler installed. Effect
Racket supports both: continue is deep and continue* is shallow. Shal-
low continuations are often used when future interpretations of the ef-
fect must change—as is the case here. Future random requests should
be serviced according to the next PRNG state, otherwise the random-
number generator would always return the same number. The with in
random-handler installs a new handler with the correct behavior.

Effect composition is the key benefit of an effect-handler-based lan-
guage over a language with primitive effects. Since an effect-handler
language expresses effects uniformly, it is straightforward to reinter-
pret them. In particular, a programmer can replace or supplement the
PRNG provided by with- random, leaving the computation (thk) intact.

For example, the handler in Figure 4.3 biases the distribution of ran-
dom numbers by squaring them. Assuming the original PRNG pro-
duces reals in [0, 1], this new handler can be composed with the origi-
nal PRNG to yield a biased generator.

18
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;3 with-bias: (— A) — A
(define (with-bias thk)
(with (bias-handler) (thk)))

(define bias-handler
(handler
[ (random)
(continue (sqr (random)))]))

Figure 4.3: Biasing Handler

The following idealized reduction sequence shows roughly how the
composition of with-randomand with-bias evaluates in Effect Racket:

(with-random (A () (with-bias (A () (random)))))

——7T (with ((handler — st0 —))
(with (bias-handler) (random)))

+—— (with ((handler — st0 —))
(define (continue x)

(with (bias-handler) x))

(continue (sqr (random))))

+—— (define (continue x)
(with (bias-handler) x))
(define (continue* Xx)
(continue (sqr x)))
(with ((random-handler (state-next st0)))
(continue* (state->number st0)))

——7T (define (continue x)
(with (bias-handler) x))
(define (continue* x)
(continue (sqr x)))
(with ((handler — stl —))
(continue* n))

——" (define (continue x)
(with (bias-handler) x))
(with ((handler — stl1 —))
(continue n?))

+—— (with ((handler — stl —))
(with (bias-handler) n?))

—t n?
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MAIN-EFFECT CONTRACTS In the presence of I/O effects, the con-
tract for rsa does not suffice. A program may accidentally (or inten-
tionally) supply a prime-generating function that reveals more infor-
mation than it should:

(define (bad-pg)
(define-values (p q) — compute primes —)
(displayln (format pq))
(values p q))

In this snippet, the prime-generating function prints the secret primes,
thus compromising the RSA key. A contract for rsa should prohibit
effectful procedures such as bad-pg.

With main-effect contracts, constructed using ->e, expressing this re-
striction is easy:

(define prime-gen-v2/c
(and/c prime-gen/c (->e random? (real-in 0 1))))

The revised contract is a conjunction of two pieces. To protect a value,
and/c uses each of the two conjuncts to protect the value, one after an-
other. Consequently, the prime-generating function must satisfy both.
While the first conjunct is the original prime-gen/c contract, the second
one restricts effects. The random? contract is a constraint on the function
itself, whereas real - in is a constraint on the context at call sites. In this
example, (->e random? (real-in 0 1)) ensures that effect requests
satisfy random? and that a use-site handler passes values to the con-
tinuation only if they satisfy (real-in 0 1). Since random? yields #f
on the effect request produced by displayln, providing bad-pg raises
an error under this contract. Note that even built-in effects, such as
displayln, can be handled in Effect Racket.

;; with-log: (— A) — A
(define (with-log thk)
(with (log-handler) (thk)))

(define log-handler
(handler
[ (random)
(define res (random))
(displayln (format res))
(continue res)l]))

Figure 4.4: Logging Handler
Main-effect contracts are active only during calls to the subject func-

tion and not at any other point—resulting in some surprising behavior.
Take the handler given in Figure 4.4 that intercepts all random-number
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requests and prints them out. In the same way as bad-pg, the handler
can be used to expose secret information:

(with-random (A () (with-log (A () (rsa pg)))))

However, this program does not result in a contract violation, even
when the contract placed on pg is prime-gen-v2/c. When pg requests
a random number, evaluation moves to the body of log-handler, out-
side the dynamic extent of pg. Therefore, prime-gen-v2/c is no longer
active when log-handler prints.

This behavior is by design and is necessary for correctly assigning
blame. A contract establishes an agreement between a client and a
server. According to prime-gen-v2/c, the pg function is responsible
only for ensuring that its code does not perform forbidden effects di-
rectly, or indirectly by calling other functions. Client code, including
the code that calls pg and the code that handles the legitimate effects pg
performs, is not beholden to this part of the contract. Raising a contract
error is wrong, even if log-handler prints.

The ->e contract combinator is not expressive enough for some situ-
ations. In particular, ->e cannot express properties where there is a de-
pendency on the effect request in the contract for the handler response.

Consider an adaptation of random with a parameter that yields a ran-
dom integer between 0 and k (inclusive):

(effect random-int (bound))

Guaranteeing that the random number is within bounds calls for ->de,
the dependent main-effect contract combinator:

(->de any/c
(A (req)
(match req
[ (random-int bound) (integer-in 0 bound)])))

The ->de contract allows the contract on the handler response to de-
pend on the effect performed. In this example, the second component
of ->de is supplied with the random-int request itself, including the
bound. It matches on the effect request and returns a contract that en-
sures the random value is within range.

CONTRACT-EFFECTHANDLERS Theprime-gen-v2/ccontractguar-
antees that the thunk always receives a real number from the PRNG

handler in response to its requests, but it gives no assurance that these

real numbers are even somewhat random. A PRNG function that al-
ways returns } does not cause an error, but it does yield a useless prime

generator. Statistical tests exist to detect faulty PRNGs [17, 89], and a

contract can employ them to detect bad PRNG implementations.
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Consider a simple test that ensures two consecutive random num-
bers are different.> The first step to realize such a check is to imple-
ment contract-local state with a contract-effect handler. A contract-effect
handler is created using the contract-handler form.

(effect diff (prev-val))

;3 with-diff: (— A) — A
(define (with-diff thk)
(with ((diff-handler -1)) (thk)))

;3 diff-handler: Real — Contract-Handler
(define (diff-handler prev)
(contract-handler
[(diff cur)
(values (not (= prev cur))
(diff-handler cur))l1))

Figure 4.5: Contract-Effect Handler for Random Number Difference

Figure 4.5 displays a contract-effect handler for keeping track of the
previous value returned by a PRNG. When executed inside with-diff,
contracts can use this test to determine whether the most recently gen-
erated random number differs from the previously generated one. The
contract-handler form is a restricted version of handler that inter-
prets only effects requested in the dynamic extent of a contract check.
Critically, contract-handler affects only contract-checking code be-
cause it can transfer values only to contract code.

Additionally, a contract-handler does not get to directly invoke the
delimited continuation of the effect request. Instead, the handler is ex-
pected to return a pair of values: the effect result and a new handler
to replace the current one.3 Direct access to the delimited continuation
would permit tampering with the program’s result and would allow in-
terference between program code and contract code, violating erasure.
For example, a handler could ignore the continuation completely and
return an arbitrary value. This flexibility is necessary for main-effect
handlers that implement exceptions but is not desirable for contract-
effect handlers.

Typically, a contract error signals a definite violation of the specification. By contrast,
this test signals that the random-number generator is likely faulty. For the implemen-
tation of random, the contract is reasonable. However, a correct implementation of
random-int may plausibly yield two of the same numbers consecutively. In such a
setting, this contract is not suitable.

This restriction is similar to that of a runner [1] where, informally, a handler may in-

voke the continuation at most once in tail position. Here, the handler must invoke the
continuation exactly once in tail position.
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Despite its limitations, contract-handler is still pretty capable.
Adapting prime-gen-v2/c yields a contract with the desired test:

(define diff-real?
(and/c real? diff))

(define prime-gen-v3/c
(and/c prime-gen/c (->e random? diff-real?)))

Here, diff-real? requests an effect whose purpose is to check whether
the latest value differs from the most recent one. Performing the diff
effect simultaneously checks that the latest value is acceptable and up-
dates the contract-local state. In this context, diff is an effectful predi-
cate and can therefore be used as a contract. With prime-gen-v3/c and
its corresponding effect handler installed, a constant PRNG signals a
contract error.

The prime-gen-v3/c example illustrates why contracts themselves
may need to perform effects. Mutable state is essential for tracking
the previous value generated by the PRNG. In this example, state
must also persist across multiple calls to the prime-generating function.
If prime-gen-v3/c reset its state on every invocation of the prime-
generating function, then more faulty PRNGs would pass the contract.

CONTRACT-HANDLER CONTRACTS For unit testing, the author of
rsa may want to use a pre-determined pool of numbers for random
generation instead of a PRNG. Suppose with-pool is a function that,
when given a thunk and a list of random numbers, applies the thunk
in a context where random numbers are generated from the pool:

> (with-pool (A () (list (random))) '(0.5 0.1 0.7))

'(0.5)

> (with-pool (A () (list (random) (random))) '(0.5 0.1 0.7))
'(0.5 0.1)

It is important that the number of times a thunk requests a random
number does not exceed the size of the pool. To enforce that property,
a piece of contract-local state is needed to keep track of how many
times random is invoked inside a thunk. However, that contract-local
state must be associated with the dynamic extent of the thunk given to
with-pool. State persisted across the entire program, implemented us-
ing a contract-effect handler, does not work. A contract-handler contract,
constructed via with/c, is needed to install a contract-effect handler
during the dynamic extent of the thunk given to with-pool.

Figure 4.6 sketches the outline of with-pool. The contract attached to
with-pool, in particular the pool/c component, ensures that thk does
not exhaust the fixed-size pool of random numbers. Because the con-
straint on the thunk depends upon the size of the pool, the dependent-
function combinator ->i must be employed. The ->i form first takes
in a list of named arguments and associated contracts. If a domain con-
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(provide
(contract-out
[with-pool
(-=1i ([thk (xs) (pool/c (length xs))]
[xs 1ist?])
[res any/c])]))

(define (with-pool thk xs)
(with ((random-pool-handler xs))
— implementation —))

;; random-pool-handler: List — Handler
(define (random-pool-handler xs)
(handler
[ (random)
(with ((random-pool-handler (rest xs)))
(continue* (first xs)))1))

Figure 4.6: Random-Number Pool

tract depends on other arguments, then it must be preceded by a list
of dependencies. After the domain contracts, there is one final contract
for the codomain.

Figure 4.7 displays the definition of pool/c and auxiliary functions.
At a high level, pool/c needs its own piece of state to keep track of
how many times random is invoked. That piece of state is supplied by
the with/c contract-handler contract. During the dynamic extent of the
thunk that the pool/c contract guards, with/c installs the given con-
tract handler. In this case, rem-handler stores the number of values
remaining in the random-number pool. So, with-pool executes thk in
a context where contracts can perform the remaining effect that is then
interpreted by rem-handler.

On its own, a contract-handler contract cannot signal a violation.
Rather, it supports other contracts that can raise an exception. Here,
the ->e conjunct of pool/c uses rem? to ensure that, if the thunk re-
quests a random number, the pool still has elements remaining.* If so,
the request is propagated. Otherwise, an error is raised.

sumMmARY Taking stock, there are the four primary constructs of Ef-
fect Racket: (1) handler produces a main-effect handler interpreting
only effects performed by ordinary code in the body of a with expres-
sion; (2) contract-handler produces a contract-effect handler inter-

4 The order of conjuncts in pool/c is relevant. Since rem? requires that rem-handler
is installed, it must come earlier in the list of conjuncts than with/c. Because and/c
applies contracts left-to-right, the right-most conjunct creates the outermost proxy.
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(effect remaining ())

;3 pool/c: Natural — Contract
(define (pool/c k)
(and/c (->e rem? real?) (with/c (rem-handler k))))

;3 rem?: Contract
(define rem?
(if/c random? (A (x) (positive? (remaining))) any/c))

;3 rem-handler: Natural — Contract-Handler
(define (rem-handler k)
(contract-handler
[(remaining)
(values k (rem-handler (subl k)))1))

Figure 4.7: Random-Number Pool Contract

preting only effects performed by contract-checking code in the body
of a with expression; (3) (->e cl c2) produces a main-effect contract
that ensures effects performed during the application of the protected
function satisfy c1 and values received from the handler satisfy c2; and
finally (4) (with/c h) produces a contract-handler contract that han-
dles (using h) effect requests during the application of the protected
function within contract-checking code.

4.2 CORE SYNTAX

The remainder of this chapter presents errect, a model of a language
with effect-handler contracts, extending contracT. This model is in-
tended to capture the essence of Effect Racket.

extends conract

Exproe = ... | with™ee | witheee|p |doe|eMf|Cf
Pair > p == (e, €)

Figure 4.8: Core Syntax of EFFECT

Figure 4.8 gives the core syntax of errecT. The expressionwith™ ey, ey
runs a main-effect handler that interprets effects performed by ordi-
nary code (not contract code) in the body expression e, using the han-
dler ey, (i.e., handler). The expression wit h¢ en ep runs a contract-effect
handler that interprets effects performed by contract-checking code
(not ordinary code) in the body expression e, using contract handler
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en (i.e., contract-handler). Pairs are included so that contract han-
dlers can return multiple values. An effect is performed using do e,
where the value of e is passed to the nearest handler.

Mirroring the handlers, effect-handler contracts also demand two
constructs, one per level. Both of these forms monitor a function that
may request effects. The expression e M f produces a dependent main-
effect contract (i.e., ->de), where the constraint on handler responses
can depend on the effect request. It ensures that effects requested dur-
ing the application of a subject function satisfy e and values received
from the handler satisfy the contract returned by f. The expression C f
produces a contract-effect contract (i.e., with/c) that installs the given
contract-effect handler during the application of a subject function.

4.3 DYNAMIC SYNTAX

‘EFFECT (DYNAMIC) ‘ extends coNTRACT

Expr> e = .. | ma rk}"1 (vMHAf)e
Inv3is=..|with™ve Jv¢ Funl|with®ve [v ¢ FunuU Pair|
Conscu=..|eMf|Cf
Valsvi= .. |vMTf|Cf| (vyw)
Ctx DE u= ... | with™Ee | with™ fE | with®E e | with®fE

| with® (v,v) E | (E,e) | (v,E) | doE | EM f
|mark}<’1 (VMAE

CoxM 5 EM w= — similar to E — | |

Ctx® 5 E® v= — similar to E — | E | mon}‘E e | with®E e

Figure 4.9: Dynamic Syntax of EFrecT

Figure 4.9 shows the dynamic syntax of erFEcT—needed for articu-
lating the reduction relation. This syntax includes mark expressions
ma rk;( ' (v M f) e. A mark ensures that effects requested by e, and their
fulfillment, satisfy the contract v M f. In other words, effect requests
“passing through” the mark should satisfy the contract. These marks
are installed by main-effect contracts.

Three different kinds of evaluation context are defined, each with a
different role. Main-effect handlers respond to effect requests in ordi-
nary code, while contract-effect handlers respond to effect requests in
contract-checking code. Evaluation contexts provide a formal means
to detect whether evaluation is occurring in ordinary code or contract-
checking code. Ctx" is the set of main-executing contexts containing reg-
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ular code that is handled by a main-effect handler. Ctx’ is the set of
contract-executing contexts describing the dynamic extent of contract
code that is handled by a contract-effect handler. Ctx is the set of all
contexts and is the union of the previous two.

Contract code executes in two syntactic positions: e, in monk e, e

j
and ey, in with® e}, ey. While the former is more obviously a contract-
executing position, the latter demands a closer look. Recall that wit h®
interprets effect requests that originate in contract code. By implica-
tion, ep, may receive and apply higher-order values originating from
contract code. Therefore, it must be considered contract code. The
definition of evaluation contexts reflects this reasoning. In particular,
Ctx™ omits (indicated by inverted colors) productions of the shape
mon¥ E ¢ and with® E e. Therefore, if a redex is in contract-checking

code, then the evaluation context will not match EM. Similarly, Cix®
omits the production for [J and specifies an unrestricted context E
in contract-checking positions mon}‘ E e and with®E e. Consequently,
a fully formed E® context is forced to have a hole located within a
contract-checking position.

4.4 SEMANTICS

for EFFECT

WITH-M withfv = v
WITH-C with®w V=V
DO-M with™f EM[do v] = E[f yo (Azo.with™ f EM[e])]

po-c-palR  with® (v, w) E€[do V'] = with®w EC[v]
1E® unhandledf
DO-C-FUN with® f E¢[do v] = with® (f v) E[do V]
1E® unhandledS

for EFFECT

ERR-DO E[dov] — E[err%] |E unhandled|

J

Figure 4.10: Semantics of EFFECT

27
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Figure 4.10 presents the handler-related reduction rules for ErrecT.
The witH-M and witH-c rules state that when the body of a handler is
a value, the computation has run its course and the handler is elimi-
nated. Otherwise, one of the po rules may apply. Both po-m and po-
c use the special evaluation contexts from Figure 4.9 to ensure that
the requested effect originates from either main-program code or con-
tract code. The po-m rule specifies main-program handlers as deep, i.e.,
the continuation reinstalls the same handler when invoked. As will be
shown later, the evaluation context E™ may contain marks deposited
by main-effect contracts. These contracts constrain main-effect requests
and main-effect-handler responses. Therefore, po-m must arrange for
these checks to occur by reading from the marks.

with fEM z B with®vEC @ E Jve FunUPair]  JE.F = FE/[E]
E unhandled ECF

Figure 4.11: Auxiliary Judgment for Semantics

The po rules rely on the E unhandled judgment, shown in Figure 4.11,
to ensure that the innermost matching handler is triggered. Omission
of these side conditions causes the semantics to be non-deterministic.

— B —
with™ f O
let xo = mon}< Vn Y1 in T Kl Lk )
mark! (v, M fp,) O let z; =mon;" (fy (X0 -j)) 2o in O
letyo=xp-lin0 J )
M
let xn_; =monkv in
nl i Vi Yn mark! (viMf) O let z, = mon'* (f1 (xn—1-j)) zn—1 in O
let Yn—1 =Xp_1-1in 0 Y )
let yp =vin0 do v Zn
F— 10 EM[do v] —]

Figure 4.12: Metafunctions for errect Graphically

Two metafunctions, T, (pronounced “up”) and |, (pronounced
“down”), collect the contracts for main-effect requests and handler
responses, respectively. The action of these metafunctions is shown
graphically in Figure 4.12. For precisely the same reason as stated in
Chapter 3, these metafunctions must produce a collection of let bind-
ings to avoid effect duplication, given the combination of dependency
and the potential for effects. Because there can be an arbitrary number
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of marks on the context, properly arranging the checks is far more
challenging than in the conTracT model. At the center of the graphic is
the redex of po-m, containing within it the evaluation context EM. The
left-hand side, which should be read from bottom to top, shows how T,
builds an evaluation context that produces let bindings for checking
effect requests. The right-hand side, which should be read from top
to bottom, shows how |, builds an expression for checking handler
responses. Dependencies are marked as yellow arrows, going from
the binding created by T, to references in |,. These metafunctions are
used in a well-scoped manner because the contractum of po-m places
the |, expression in the scope of bindings produced by Ts.

‘Tn : Expr — Ctx‘

Thdov:=1lety, =vinl
Thma rk}"l (WM Af)e:= (Tnire)[let x, = mon}‘w Yn41 10

letyn =xn - lin Q]

’ln : Ctx — Expr‘

In=zq
Inma r‘k}"l (wWMAS)E:=let zng = monjl’k (f (xn+j)) znin n E

Figure 4.13: Metafunctions for EFFECT

Figure 4.13 gives the formal definitions of these two metafunctions.
The formal definitions show that the index placed on the metafunc-
tions plays a role in generating appropriately indexed variables. Care-
ful management of the indices ensures that bindings and references are
properly aligned. Additionally, note that the bottom-to-top reading of
Tn implies that the innermost element of the redex (i.e., do v) corre-
sponds to the outermost frame of the resulting evaluation context. To
achieve this reversal, the formal definition of T, fills the hole of the
recursive result, flipping the evaluation context inside-out.

The po-c rules specify contract handlers that have no control over the
continuation. Furthermore, the reduction of contract handlers necessi-
tates two rules to distinguish two cases. Specifically, the expression ey
in with® ey, e, can reduce to either a function or a pair (i.e., multiple
values). In po-c-PAIR, the first component is placed into the evaluation
context, which is the continuation of the effect request, and the second
component becomes the next handler. In po-c-ruN, the function is ap-
plied to the effect request with the expectation that this new contract
expression eventually reduces to a pair, and then the previous rule will
apply. Like MmoN-LAM, this rule ensures that contract code is always ex-
ecuted in a syntactic position that is recognized by Ctx® contexts.
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4.5 METATHEORETIC PROPERTIES

MON-M mon}< (wMAf) g > grd}< (WM ) g
FE monk (WM f) v - errk [v ¢ Lam|
GRD-M (g rd}( (WwMAf)g)-1> 7\X.mark}"1 (w M) (gx)
MARK ma rk}ﬂl (WM v = v
MON-C mon (Cf) g > grd¥ (Cf) g
ERR-C monk (€)v - errk v ¢ Lam]
R (grdf(€f) g) -1 = Ax.with®f (g x)

Figure 4.14: Semantics of errecT (Continued)

Finally, Figure 4.14 presents the reduction relation rules governing
both kinds of effect-handler contracts. The mon rules ensure the first-
order constraint that the subjects are functions. If they are functions,
the contracts act in a higher-order manner via Grp-m and Grp-c. The
GrRD-M rule installs a mark that constrains effects performed during ap-
plications of g. Actually checking these contracts, as seen previously,
is delegated to po-m. Once the dynamic extent of a mark expression
ends, the mark can be eliminated via the marx rule. The Grp-c rule
simply wraps the subject in a contract-effect handler, where f becomes
the handler function.

4.5 METATHEORETIC PROPERTIES

The key property of interest for the model is contract erasure. Contracts
are intended to detect violations of specifications and, therefore, the
output of a correct program should not depend on their presence or ab-
sence. In short, contracts must not interfere with program execution—
other than possibly signaling an error.

‘8[[]} : Expr — Expr‘

Ex] ==x

c‘i[[mon;“l ec es] == Efes]
e[with®en ep] == E[ep]
Figure 4.15: Erasing Metafunction

The erasure theorem requires an erasure metafunction £[-], defined
in Figure 4.15, to erase contract monitors and contract handlers.
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Theorem (Erasure). If eval(e) = b then eval(E[e]) = b.
Proof. By simulation. See Chapter A. O

Non-termination is the one contract effect in the model that can affect
a program’s behavior. So long as contracts contain code in a Turing-
complete language, this effect is unavoidable. As stated, Erasure holds
because the antecedent rules out non-terminating contracts.

Establishing the erasure theorem is straightforward in a pure set-
ting, yet difficult to achieve in a language with effects. Erasure means
contract code cannot interfere with the main program, directly or indi-
rectly, via effects. A language with effect-handler contracts poses the
additional problem of granting contract code the right to perform ef-
fects, while imposing enough constraints such that erasure holds.

Designing a language semantics satisfying contract erasure requires
balancing expressive power with preventing interference. The ErrecT
model achieves that delicate balance. Limiting the expressive power
any further makes programming inconvenient and would disallow ex-
isting use cases. Adding more power potentially violates erasure.

Consider a naive design where the reduction relation for handlers
merges the two levels of effect handling:

with f E[dov] > fv (Az.with f E[z]) |E unhandled].

Instead of restricting the evaluation context in the body of the handler,
this rule uses the unrestricted context E. Such a rule violates contract
erasure as the following program demonstrates:

with (Ax.Ay.x) (mon} (do ff) tt).

The original program evaluates to ff, but erasing the contract yields
a program whose value is tt. Modifying po-m to use an unrestricted
evaluation context, or modifying po-c-Fun to give direct access to the
continuation, both result in violations of erasure because they produce
a rule equivalent to the one above.

Introducing “main-handler contracts” with the rule

mon® (M f) g = Ax.with™ f (g x)
also violates erasure. Here is a counterexample:
with™ (Ay.Az.y) ((mon}" (M (Ay.Az.£f)) (Ax.do X)) tt).

The original program evaluates to ff because the contract-installed
handler is invoked, while the outer handler stays inactive. The erased
variant, however, yields tt because the outer handler is invoked in the
absence of the contract-installed one.
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Effect-handler contracts are, by design, as general as possible. As a
practical tool, though, they are too low level. Higher-level effectful
contracts are needed for real applications. For instance, library docu-
mentation often comes with sequence diagrams, protocol descriptions,
and other temporal specifications, dictating how a library may be used.
Unix’s I/O APl is a standard example: “open a file before reading from
it.” A framework for computing static-analysis passes may require that
it be given monotone transfer functions. A GUI framework may allow
the registration of callback objects and promise to call them back in
the order of registration.

Trace contracts are one kind of effectful contract that address these
kinds of specifications. Namely, they permit the functional specifica-
tion of constraints across multiple function and method calls. A trace
reifies the sequence of values that flow through interception points of
a contract system, such as function calls. A trace contract inspects this
reified trace with a predicate that decides whether a property holds.

This chapter introduces trace contracts by example (Section 5.1) and
describes a model of trace contracts, supplying its syntax (Section 5.2)
and semantics (Section 5.3). Formally modelling trace contracts clar-
ifies the central challenge: on the one hand, specifications should re-
main functional, while on the other hand, collecting a trace of values
necessarily involves mutable state. Managing this state while maintain-
ing ordinary contract composition is the key design criterion.

51 EXAMPLES

In 2020, a developer reported a bug to Racket’s mailing list about
the current-memory-use function [73]. The documentation states that
the function “returns an estimate of the total number of bytes allo-
cated since start up, including bytes that have since been reclaimed by
garbage collection” [59]. Given this description, one might expect that
the series of return values from current-memory-use would increase
over time. However, a memory-consumption plot for a long-running
system showed periodic dips.

In a language with a conventional type system, such as Java, this
function would have the following signature:

// Returns the number of bytes allocated since start up,
// including those deallocated during garbage collection.
int currentMemoryUse();

32



5.1 EXAMPLES

The comment mentions two unchecked constraints. First, the func-
tion’s result cannot be negative, so int is imprecise. In Racket, the API
author could improve on this type with the (-> natural?) contract.
Second, the documentation implies that every call returns a number
that is greater than or equal to the result of all previous calls.

(provide
(contract-out
[current-memory-use
(trace/c ([y natural?])*
(->y)?
(full (y) sorted?)3)1))

Figure 5.1: Basic Trace Contract

Figure 5.1 demonstrates that trace contracts can express both con-
straints directly. As the superscripts indicate, a trace contract consists
of three parts: (1) a sequence of trace variable declarations, including
one contract associated with each variable; (2) a contract expression,
dubbed the body contract; and (3) a sequence of predicate clauses.

The simple trace contract in Figure 5.1 comes with a single trace vari-
able, y, associated with natural?. The body contract is (-> y), which
specifies ordinary single-call constraints placed on values protected by
the trace contract. When a client module calls current-memory-use, the
contract system ensures that the returned value is a natural number,
expressing the first constraint. If the value is a natural number, it is
collected in a trace data structure associated with y. Additionally, the
trace contract specifies a full predicate clause that depends on y. For
full, the trace data structure is represented with a stream. Every time
the contract system collects a value in the y trace, it applies the func-
tion specified in the predicate clause (i.e., sorted?) to the stream of
values. The trace contract fails if sorted? returns #f, indicating a dip
in the sequence.

Note that sorted? is a pure function in the host language, just like
ordinary first-order behavioral contracts. One immediate advantage is
that a developer can test contracts like any other piece of code—an
important property considering that all code, including specification
code, may have bugs.

With this contract in place, violations are detected as soon as they
occur and blame information points to the party responsible:

> (current-memory-use)

100

> (current-memory-use)

current-memory-use: broke its own contract
produced: 0
blaming: current-memory-use
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In this interaction, current-memory-use returns 0 on the second call,
causing a contract error. Since the problematic value was collected
from the module that defined current-memory-use, the function itself
is to blame. Developers confronted with this error message can imme-
diately report a bug in the library, knowing with confidence that their
code is not responsible for the fault.

In its current form, the current-memory-use contract comes with a
steep performance cost. While any contract can slow down a program,
naive trace contracts can be especially expensive because they execute
code every time a value is added to a trace. Programmers should be
mindful of this expense. In particular, sorted? iterates through the en-
tire y trace every time a new value is collected. Checking this trace
contract is quadratic in the number of calls to current-memory-use.
To reduce this overhead, a trace-contract system must give developers
fine-grained control over how the trace is represented.

Developers must be able to choose a custom representation of the
trace instead of the stream data structure. This choice involves three
steps: (1) decide on a data structure; (2) pick an initial value; and
(3) supply an operation that incorporates a value into the existing trace
representation or signals a failure. The accumulate predicate clause
gives developers this control, and the data structure is dubbed the ac-
cumulator. The accumulating function given to accumulate receives two
values: the current accumulator and the newly collected values. It re-
turns the new accumulator on success or a designated failure value
otherwise. For the running example, it suffices to use a single number
as the accumulator. A simple comparison between any collected value
and the accumulator is enough to enforce the promised behavior.

(trace/c ([y natural?])
(->y)
(accumulate 0
[(y) (A (acc cur) (if (<= acc cur) cur (fail)))]))

Figure 5.2: Trace Contract with Accumulator

Figure 5.2 improves on the previous trace contract using an accumu-
lator. The accumulate clause specifies an initial accumulator value of 0
and an accumulating function. When the y trace receives a new value,
the accumulating function is applied to the current accumulator and
the latest value. If the current accumulator is less than or equal to the
new value, then the new value is returned and becomes the next ac-
cumulator.” Otherwise, the function’s result is (fail), the designated
failure value.

If current-memory-use were to return a non-numeric result, an error would be raised
even without the natural? check on y because <= expects two numbers. The error

message, however, would blame the contract itself for violating the contract on <=,
instead of current-memory-use. So, the natural? check should remain.
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Every trace contract can be expressed with accumulate instead of
full.> While fullis a useful tool to understand trace contracts concep-
tually, in practice programmers should almost always use accumulate
combined with an efficient data structure.

5.2 SYNTAX

TRACE (CORE) | extends CONTRACT

Exproe:x=..|fTg

Figure 5.3: Core Syntax of TRACE

Figure 5.3 defines the core syntax of TRACE, a language with trace con-
tracts extending the contracT model from Chapter 3. The core syntax
contains one new form f J g, a trace contract containing body-contract
constructor f and accumulating function g. A body-contract construc-
tor is a function that, when provided with a collector, returns the body
contract. A collector is a contract that gathers values flowing through
interception points specified in the body contract and ensures the trace
predicate remains satisfied. Collectors rely on mutable state to update
the accumulator.

‘TRACE (DYNAMIC) ‘ extends cONTRACT

Config > X == (e, 0)

Exproeu=..|00f|{—e
Consdcu=..|fTg|LOFf
Valsviu= .. | fTg|LOFf
Ctx>Eu=..]{«E

Store > 0 := Loc — Val

Loc > ¢

Figure 5.4: Dynamic Syntax of TRACE

Figure 5.4 defines the dynamic syntax of TRAce. Because trace con-
tracts need mutable state, the semantics is defined over configurations
containing stores. Expressions include ¢ O f for collector contracts
(where { is the cell containing the accumulator and f is the accumulat-
ing function) and { + e for writing to the store.

2 In fact, full is syntactic sugar over an accumulate clause with a stream accumulator.
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5.3 SEMANTICS

MON-T <E[mon (fTg)v],o0) — (E [mon (g (€O 1) v], o[ — tt])
{ ¢ domof
Mon-0 (E [mon (€O f)v], o[l — v]) — (E[mon (£ — fvg)v],0)
MUT-T (E[L « v],0) — (E[tt], 0l — V]) [v = ff]
MUT-F (E[L « ff],0) — (E[ff], o[l — ff])
LIFT (Ele],0) — (E[€/],0) |e = €|
ERR (Elerr¥],0) —— (errf o) L+ ]

Figure 5.5: Semantics of TRACE

The semantics of the trace-contract model is presented in Figure 5.5.
There are two rules relating to contracts and two rules for writing to
the store. The monN-T rule first allocates a new location for storing the ac-
cumulator, initialized with tt. Then, it creates a collector and provides
it to the body-contract constructor. The mon-o rule produces code that
updates the accumulator according to the newly collected value. If the
new accumulator is not ff, then MuTT yields tt after updating the store,
and the contract check succeeds. Notably, murr does not yield v be-
cause that may result in an incorrect contract check in mon-o. If the
new accumulator is ff, then Mmut-r yields ff, and the contract check
fails. Finally, the Lirr and ErR rules from coNTRACT must be adjusted to
accomodate stores.

A deliberate choice has been made here to extend coNTrRACT and
not errecT. Given that effect-handler contracts are a supposedly uni-
fied mechanism, one may wonder whether trace contracts are express-
ible using just the tools described in Chapter 4. The answer is yes. For-
malizing this claim, however, would involve defining a compiler from
TRACE to EFFECT, and then proving that compiler correct. Such a proof is
possible but would not be enlightening.3 It is at this point—where the
complexity of the model grows faster than the insight it delivers—that
implementations come into play. The next part answers the expressive-
ness question with macros. Several effectful contracts, including trace
contracts, will be given macro translations in Effect Racket.

The original trace-contract publication [108] has a similar compiler-correctness proof,
although for a different target language.
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Part II

CONSTRUCTIVE

Following the formal models, Effect Racket realizes effect-
handler contracts within an entire handler-based language.
Three kinds of effectful contract, within the context of stock
Racket, are presented as practical alternatives: parameter
contracts, trace contracts, and attribute contracts.



EFFECT RACKET

Moving beyond models calls for a production-level language with
linguistic constructs for realizing effect-handler contracts easily and
a well-developed higher-order contract system. Racket is such a pro-
gramming language [52, 56, 59, 60].

This chapter presents Effect Racket, a flavor of Racket with effect
handlers and a full contract system, aimed at capturing the features de-
scribed in Chapter 4. Following the precedent of Typed Racket, the lan-
guage is implemented as a library [140] and validates that the model
from Chapter 4 can be realized. Section 4.1 already showed some syn-
thetic programs written in Effect Racket. Here there will be somewhat
more realistic examples (Section 6.1) and a discussion of how the im-
plementation itself works (Section 6.2).

6.1 EXAMPLES

Effect Racket implements features from the formal model of effect-
handler contracts to support experimentation. The language includes
main-effect handlers, main-effect contracts, contract-effect handlers,
and contract-handler contracts.

MAIN-EFFECT HANDLERS As an introductory example, consider
implementing ML's first-class mutable references using effect handlers.
References come with a ref constructor and two elimination forms:

(effect ref (v))
(effect ref-get (r))
(effect ref-set (r v))

In Effect Racket, each form demands the declaration of a correspond-
ing effect: one for allocating a reference cell, one for getting its value,
and yet another for assigning to a cell. Declaring an effect makes the ef-
fect name available both for requesting the effect and, within a handler,
interpreting the effect. The effect form in similar to a struct declara-
tion, but instead of creating an instance of a struct, applying the effect
name performs the given effect.

Figure 6.1 displays code for the corresponding effect handler, with
one clause per declared effect. All other effects are propagated auto-
matically. Furthermore, the handler form binds two identifiers to de-
limited continuations: continue for resuming in a deep manner and
continue* for resuming in a shallow manner. With a deep handler, ap-
plying the continuation automatically reinstates the current handler.
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;3 ref-handler: Store — Handler
(define (ref-handler store)
(handler
[(ref init)
(define-values (r store¥*)
(store-alloc store init))
(with ((ref-handler storex*))
(continue* r))]

[(ref-get r)
(continue (store-get store r))]

[(ref-set r v)
(with ((ref-handler (store-set store r v)))
(continue* (void)))]))

Figure 6.1: Mutable References in Effect Racket

With a shallow handler, it does not. Otherwise, the handler uses stan-
dard techniques for implementing a store in this setting [23, 124].

Any language in the Racket ecosystem, including Effect Racket, is
easily equipped with a REPL. By running an Effect Racket program,
the definitions of effects and handlers become available for interactive
experimentation:

> (with ((ref-handler empty-store))
(define r (ref 0))
(ref-set r (addl (ref-get r)))
(ref-get r))

1

A handler is installed using the with form. In the context of the with
expression body, it is possible to allocate a reference cell, to increase its
value by 1, and then to retrieve its contents.

MAIN-EFFECT CONTRACTS Suppose a programmer wishes to write
a library function that guarantees a frame condition. In particular, the
function guarantees that it manipulates only a specific reference cell
during the dynamic extent of a call. A good name for this contract
would be mutates-only/c.

Figure 6.2 shows how a library’s interface may state that guarantee.
The ref-restore function is intended to run f applied to r, restore the
contents of r to its original value, and return the value of r that f stored
there. Protecting the function is a dependent contract that governs two
arguments, r and f, and promises nothing about its result. The novel
piece is the contract for f, which says that it may mutate only r.
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(provide
(contract-out
[ref-restore
(-=i ([r reference?]
[f (r) (mutates-only/c r)l])
[res any/c])]))

Figure 6.2: Contract Restricting Mutation

;; mutates-only/c: Ref — Contract
(define (mutates-only/c r-ok)
(define (effect-ok? e)
(match e
[(ref-set r ) (equal? r r-ok)]
[ #t]))
(->e effect-ok? any/c))

Figure 6.3: Frame Contract

Shown in Figure 6.3 is a frame contract implemented as a main-effect
contract. The mutates-only/c function takes a reference cell as an ar-
gument and returns a main-effect contract that permits writing only to
the given cell and no other. The two-part ->e contract tells a reader that
requested effects must satisfy the effect - ok? predicate and that values
returned by the handler can be anything. According to effect-ok?, any
write effect must be to a reference cell that is equal? to r-ok. All other
effects are permitted.

CONTRACT-EFFECT HANDLERS An affine contract guarantees that
a function is called at most once by keeping track of how many times
it has previously been called using mutable state.

Figure 6.4 shows how an affine contract can be defined in Effect
Racket. The —o contract must allocate a reference for keeping track of
whether a function has previously been called. The presented code re-
alizes this constraint using the self/c combinator, which enables cas-
cading contracts. When protecting a subject v, self/c first applies a
function to v and then uses the result to protect v. Here, the function
given to sel f/c returns the expected function contract. The purpose of
self/c in this definition is to ensure that a new reference is initialized
for each protected function. Creating the reference outside self/cisin-
correct because it results in a single global reference cell for the entire
program. For —o, the value v is not needed by self/c and is discarded.
Using the precondition-checking feature of ->i, annotated with #:pre,
the reference is used to determine if the call should succeed and, if it
does, the contents of the reference is decremented.
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;3 —o: Natural Contract Contract — Contract
(define (—o n dom cod)
(self/c
(A _
(define r (ref n))
(->i ([x dom])
#:pre () (unused? r)
[res cod]))))

;5 unused?: Reference — Boolean
(define (unused? r)
(define m (ref-get r))
(cond
[(zero? m) #f]
[else (ref-set r (subl m)) #t]))

Figure 6.4: Affine-Function Contract with Effect Racket

Since the contract relies on reference cells at the contract level, it is
necessary to execute the program within a contract handler that sup-
ports mutable references. The implementation of mutable references
from Figure 6.1 must be adapted to the contract-handler form instead
of the handler form, but doing so is straightforward.

CONTRACT-HANDLER CONTRACTS A function is reentrant if it can
call itself recursively (directly or indirectly). A contract-handler con-
tract can check for non-reentrancy by prohibiting recursive calls dur-
ing a function call’s dynamic extent. Implementing such a constraint
requires both a contract-handler to mark the dynamic extent of a
function call and a contract-handler contract.

Figure 6.5 displays a contract that enforces non-reentrancy. When a
client applies f, the precondition requests a non-reentrant effect. If
this request yields #f, the function is already running; otherwise, the
#:fail option, which provides a default value if no matching handler
is installed, returns #t. Once the precondition check passes, the second
wrapper sets up a contract-handler contract using with/c. Thus, if f
were to call itself, the contract would raise an exception because the
installed non-reentrant-handler supplies #f.

6.2 IMPLEMENTATION OVERVIEW

The implementation of Effect Racket consists of about 1100 source lines
of code (SLOC). Most of these lines compose elements from existing
libraries. For example, effect handlers themselves are implemented as
thin wrappers around Racket’s existing library of delimited control op-
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6.2 IMPLEMENTATION OVERVIEW 42

(provide
(contract-out
[f (and/c
(with/c non-reentrant-handler)
(->1i ([x any/c])
#:pre () (non-reentrant #:fail #t)
[res any/c]))]))

(effect non-reentrant ())

(define non-reentrant-handler
(contract-handler
[ (non-reentrant)
(values #f non-reentrant-handler)]))

Figure 6.5: Contract for Non-Entrancy

erators [60]. Other pieces of the implementation ensure that Racket’s
effectful primitive operations are inaccessible to programs in Effect
Racket. After all, a main-effect contract would be meaningless if cer-
tain primitive effects cannot be reinterpreted.

One critical aspect of the implementation concerns a key assump-
tion from the model in Chapter 4, which mandates that handlers can
detect whether an effect request originates from main code or contract
code. Formally, this idea is encoded via special evaluation contexts.
As it turns out, Racket’s contract system already provides a mecha-
nism for determining whether code is executing inside a contract [3].
Specifically, contracts set up continuation marks [30] that delineate
contract-specific code from user code. Thus, the effect handler forms
inspect the delimited continuation and look for this mark to determine
whether the effect should be handled. As a result, Effect Racket does
not require any modifications to Racket’s existing contract system.

As alanguage in Racket’s ecosystem, Effect Racket inherits the mod-
ule system too, which raises the question of interoperability. In addi-
tion to full interoperability with other Effect Racket modules, the lan-
guage has a shallow form of interoperability with plain Racket mod-
ules. First-order values can flow freely from an Effect Racket module
to a foreign module and back; higher-order values are wrapped in
an opaque structure so they become unusable until returned to Effect
Racket, where they are unwrapped.

In summary, the implementation effort reveals that the addition of
effectful contracts to an effect-handler-based language is straightfor-
ward, except for effect stratification. Assuming that the erasure prop-
erty is desirable, an implementer must add a mechanism that demar-
cates the dynamic extent of contract-checking code.



PARAMETER CONTRACTS

Effect Racket is a useful demonstration that the ideas from Chapter 4
can be realized. As a practical tool that Racket programmers can em-
ploy in their software, however, it is insufficient. Developers should
be able to get some benefits of effect-handler contracts without be-
ing forced to change the ambient language. In that spirit, this chapter
presents a backwards-compatible extension to Racket’s contract sys-
tem that covers contract-handler contracts.

7.1 EXAMPLES

Contract-handler contracts can set up information during a dynamic
extent that other contracts can later reference. In Racket, information is
associated within a dynamic extent via parameters [64]. A parameter
can store a value for the dynamic extent of an expression’s evaluation;
no matter how evaluation evolves, the original value is placed back
into the parameter when the dynamic extent ends—even via an excep-
tion or continuation jump. The Racket implementation of parameters
uses continuation marks [30]. A parameter contract is a specialized form
of contract-handler contract that sets the value of a parameter during
the dynamic extent of a function call. This section illustrates parame-
ter contracts with two examples, one enforcing that yield is called only
within a generator, and the other ensuring termination.

GENERATOR AND YIELD A generator is a thunk that may call the
one-argument yield procedure in its dynamic extent. When it does so,
the evaluation of the generator is suspended, and the value handed to
yield becomes the result of the generator. When the generator is called
again, the suspension is resumed until the next call to yield.

(define evens
(generator
(A ()
(for ([k (in-naturals)])
(yield (* 2 k))))))

Figure 7.1: Generating Even Naturals

Figure 7.1 shows a simplistic example of a generator that produces
all even natural numbers. A generator is created by passing a thunk
to the generator function. The key constraint is that yield should
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be invoked only during the dynamic extent of the thunk. Without ef-
fectful contracts, this constraint is documented informally, or possibly
checked using interspersed defensive checks.

(provide
(contract-out
[generator
(-=i ([thunk (-=i () #:param gen #t any/c)])
[result generator?])]
[yield
(-=1i ([v any/c]) #:pre (gen) [result any/c])]))

(define gen (make-parameter #f))

Figure 7.2: Contracts for Generator and Yield

Figure 7.2 displays a parameter contract that expresses this con-
straint on the generator interface. The ->i contract on generator is
a parameter contract because it contains the #:param clause, initializ-
ing the parameter gen. Symmetrically, a precondition clause on yield
checks the context to ensure that the gen parameter is set to #t, indi-
cating that it is being evaluated during generation.

TERMINATION The literature on static analysis occasionally relies
on termination checking, often encoded via the size-change property
(SCP) [92]. Nguyén et al. [112] present an ad hoc contract for checking
the SCP. Roughly, the contract keeps track of a size-change graph that
includes information about non-descending paths of argument sizes.

(define-syntax (total-> stx)
(syntax-parse stx

[(_arg-ctc ... res-ctc)
#:with (arg ...) (generate-temporaries #'(arg-ctc ...))
#' (self/c
(A
(define sg (make-parameter empty-graph))
(->i ([arg arg-ctc] ...)
#:pre (graph-update sg (list arg ...))

#:param (graph-update sg (list arg ...))
[result res-ctcl)))1))

Figure 7.3: Contract for Total Functions

Shown in Figure 7.3 is a parameter contract that expresses the termi-
nation contract with a parameter to update the size-change graph. The
total->macro produces a termination contract that expands into ->i.
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As with affine contracts, the contract uses self/c to initialize the sg
parameter at the appropriate time. This parameter initially contains the
empty size-change graph. When called, the total-> contract’s precon-
dition first checks whether updating the size-change graph with the
new arguments would violate the SCP." If so, graph-update returns #f
and the program signals a contract violation. Otherwise, the #:param
option extends the size-change graph with new information about the
arguments. Due to the halting problem [144], this contract is necessar-
ily overapproximate. However, any function that satisfies the contract
is guaranteed to terminate.

(define ack
(invariant-assertion
(total-> integer? integer? integer?)
(A (m n)
(cond
[(=0m) (+1n)]
[(=0n) (ack (- m 1) 1)]
[else (ack (- m 1) (ack m (- n1)))]))))

Figure 7.4: Ackermann Function

Figure 7.4 shows the Ackermann function with termination check-
ing enabled. The key element is the invariant-assertion construct,
which attaches a contract to a function and enforces that it is checked
on every call site, including recursive ones. Ordinary contract attach-
ment forms, such as contract-out or define-contract, are active only
at the boundary between components. These forms are not appropri-
ate for termination checking because an arbitrary number of recursive
calls can occur within a single component.

7.2 IMPLEMENTATION OVERVIEW

The addition of parameter contracts to Racket’s contract system con-
sists of a 230 SLOC patch to the ->i combinator code. Key to the imple-
mentation is Racket’s expressive support for proxy values [134]. Proxy
values are able to maintain expected invariants, such as equality be-
tween the original value and the proxy. Importantly, procedure prox-
ies support manipulating continuation marks upon application. The
patch to ->i takes advantage of a special internal value that serves as
the continuation-mark key for all parameterizations [57]. The value of

On a recursive call, a new size-change graph is created that records the size relation-
ship between each argument and its value in the recursive call. This graph is added
to the current set of size-change graphs and is closed under sequential composition.
If there is an idempotent graph that lacks a self-descending edge, then the SCP fails.
See Nguyén et al. [112] for a full explanation.
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this key is a mapping between parameters and assignments. Another
internal function updates this mapping. When the #: param option is
set, the modified ->i contract generates code that installs an updated
value for the parameter continuation-mark key. When the #: param op-
tion is missing, the contract does not generate this code. In short, pa-
rameter contracts are a pay-as-you-go construct.

Like Effect Racket, the modification of Racket’s contract system can
guide the effort of others in adding parameter contracts to existing
contract systems. If the underlying language comes with a mechanism
such as continuation marks, the effort is fairly minimal. Otherwise, the
implementer may wish to consider adding a continuation-mark mech-
anism because it has proven useful for a variety of different applica-
tions [26, 29, 30, 57].

7.3 TRANSLATING TO EFFECT RACKET

(effect env-get (key))

(define (parameterize/c key val)

(make-contract

#:1late-neg-projection

(A (blm)

(A (subj neg)
(A args
(with ((env-contract-handler key val))
(apply subj args)))))))

(define (env-contract-handler key val)
(contract-handler
[(env-get (== key))
(values val (env-contract-handler key val))l))

Figure 7.5: Parameter Contracts in Effect Racket

Figure 7.5 shows a basic implementation of parameter contracts as a
macro in Effect Racket. It begins with an effect declaration for env-get
that allows contract code to retrieve the value associated with a given
key. This key plays the role of Racket’s parameters.

The parameterize/c contract ensures that the function it protects is
augmented with a handler that creates, in contract code, the key-value
association. Its definition drops into the low-level contract-defining in-
terface for Racket (make-contract) to produce a value with the de-
sired handler installed. The curried #:late-neg-projection function
is given three inputs: a first-class blame object, the subject value, and a
negative blame-party label. It is expected to return a proxy of the sub-
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ject function. Here, the proxy applies the subject to its argument with
env-contract-handler installed. This handler matches env-get effect
requests with the correct key—responding with the associated value.
There are two major simplifications in this implementation. First, un-
like the real implementation, parameterize/c cannot have a param-
eter whose value depends on the arguments to a function. Second,
the wrapper returned by the projection function in parameterize/c
should ideally be a chaperone [134] of the original value. Chaperones
are a kind of restricted proxy with additional guarantees that are desir-
able when possible. Handlers in Effect Racket do not use continuation
marks, so the technique used in Section 7.2 is not possible here.
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While Chapter 5 illustrates trace contracts with synthetic examples suit-
able to understand the model, a practical implementation has to con-
tend with a far greater amount of complexity than is worth formalizing.
Developers need features. This chapter dives further into the Racket
implementation of trace contracts, including practical aspects of the
library and how it works under the hood. A simplified macro imple-
mentation in Effect Racket is given in the final section, further validat-
ing that effect-handler contracts are a flexible mechanism.

8.1 EXAMPLES

The examples in this section demonstrate trace contracts for functions
that demand sophisticated accumulator data structures and different
state initialization strategies.

CHECKING ALL CALLS TO ONE FUNCTION Consider a compiler
pass that computes a live-variable analysis via fixed-point iteration [86].
The interface to such an analysis, using ordinary contracts, may look
similar to Figure 8.1.

(provide
(contract-out
[live-vars (-> (-> set? set?) label? set?)]))

Figure 8.1: Live Variables Contract

Given a monotonically increasing transfer function and a program
label, live-vars returns the set of live variables at that label [114]. To
be correct, the transfer function must be monotonically increasing, but
this constraint is not enforced in Figure 8.1. An incorrectly computed
least fixed point can cause a silent failure and may be difficult to debug.

A trace contract can enforce monotonicity, as seen in Figure 8.2. The
mono/c function consumes two contracts and a comparison function; it
returns a function contract that checks monotonicity with respect to the
given comparison function. When a client module imports live-vars
and invokes it, the mono/c contract is attached to the supplied trans-
fer function. This contract stipulates that the transfer function takes
and returns sets and is monotone with respect to set inclusion. Dur-
ing fixed-point iteration, the trace contract observes all input-output
pairs and builds an extensional representation of the transfer function.
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(provide
(contract-out
[live-vars (-> (mono/c set? set? subset?) label? set?)]))

;3 mono/c: Contract Contract Comparator — Contract
(define (mono/c dom/c cod/c leq?)
(trace/c ([x dom/c] [y cod/c])
(-= xvy)
(accumulate (red-black-tree leq?)
[(x y) (mono-func leqg?)]1)))

Figure 8.2: Monotonicity Contract

Violations of monotonicity are detected by ensuring that no two input-
output pairs fail the property.

In this example, the subclause within accumulate depends on two
traces, x and y. When a subclause depends on more than one trace, the
contract system waits until at least one new value has been collected
for each trace before applying the function. If a trace receives more
than one value before the other traces are ready, then all but the last
are discarded.!

While a stream containing all input-output pairs would work, it
would be highly inefficient. An order-aware data representation can re-
duce the time needed from O(n?) to O(nlogn), where n is the number
of calls to the transfer function. One possible choice is an immutable
red-black tree [106, 115] as it can quickly determine the immediate
predecessor and successor of an element in an ordered set.> Every
time the trace contract monitors a new value, it initializes a new accu-
mulator. If live-vars is invoked twice, two separate accumulators are
created, one for each transfer function.

Figure 8.3 displays the curried accumulating function that finishes
the definition of mono/c. When the transfer function returns, mono - func
is applied to the current accumulator acc, the latest input x, and the lat-
est output y. It determines the transfer function’s predecessor and suc-
cessor results for x and, if they exist, checks that they properly relate to
the current output y. Just two comparisons are enough; by transitivity
there are no other monotonicity violations. If successful, mono- func re-
turns the next accumulator, relating the new input-output pair in the
augmented red-black tree.

1 Other choices are expressible by having multiple accumulate subclauses with one de-
pendency each. The accumulator would store collected values and then the accumu-
lating function would determine the policy.

2 Ordinarily, red-black trees work only for a total order and not a partial order such
as set inclusion. However, since fixed-point iteration explores a chain of comparable
elements, a red-black tree is acceptable. A general-purpose contract for monotonicity
that supports partial orders would require a different data structure.
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;7 mono-fun: Comparator — (Dict Any Any — (Or Dict Fail))
(define (mono-func leqg?)
(A (acc x vy)
(cond
[(dict-has-key? acc x)
(if (equal? y (dict-ref acc x)) acc (fail))]
[else
(define pred-y (dict-pred acc x))
(define succ-y (dict-succ acc x))
(if (and (=> pred-y (leq? pred-y y))
(== succ-y (leg? y succ-y)))
(dict-set acc x y)
(fail))1)))

Figure 8.3: Monotonicity Accumulating Function

GLOBALINITIALIZATION OF TRACES The following warning from
Racket’s documentation tells developers about an essential constraint
that the language does not enforce:

If a key in an equal?-based hash table is mutated (e.g., a
key string is modified with string-set!), then the hash ta-
ble’s behavior for insertion and lookup operations becomes
unpredictable.

Time and again, programmers fail to heed this warning, experience
arbitrary program behavior, and have a difficult time debugging.

(provide
(contract-out
[hash-set hash-set/c]
[string-set! (-> mutable/c natural? char? void?)]))

(define-values (hash-set/c mutable/c)
(trace/c ([t any/c])
#:global
(values (-> hash? (list/t 'set t) any/c void?)
(list/t 'mut t))
(full (t) not-interfere?)))

Figure 8.4: Contract for Hash Mutation

Figure 8.4 shows a trace contract that can enforce this property. First,
the body contract produces two values using the values function to
return multiple results [8]. Because the property relates different func-
tions,i.e., hash-set and string-set!, their contracts need to be created
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;3 not-interfere?: Stream — Boolean
(define (not-interfere? xs)
(match xs
[(stream) #t]
[ (stream* " (mut ,x) xt) (not-interfere? xt)]
[(stream* " (set ,x) xt)
(and (not (stream-member? xt "~ (mut ,x)))
(not-interfere? xt))1))

Figure 8.5: Predicate for Hash Mutation

within the same trace/c. Second, the #:global option causes the state
of the trace contract to be initialized at definition time, not the usual at-
tachment time. Without #:global, the hash-set/c and mutable/c con-
tracts would be initialized separately and could never interact. Finally,
the list/t function alters the given collector to tag incoming values
with a symbol. Here, the symbol is used to indicate the operation. The
not-interfere? predicate in Figure 8.5 ensures that no key is modified
after it is inserted into a hash table.3

8.2 BLAME AND SUSPECTS

When a contract system discovers a contract violation, it raises an ex-
ception that includes a witness value and a pointer to the responsible
component. As Lazarek et al. [91] show in the context of behavioral
contracts, blame assignment comes with enough information to almost
always locate the actual source of a bug. They simulate tens of thou-
sands of buggy programs by introducing a targeted fault via mutation.
In most cases, following blame assignment leads to the source of the
bug. The few hundred cases where blame fails to identify the bug is
precisely due to a lack of multi-call contracts. One of their examples is
the punGeoN program. Strengthening the behavioral contract to a trace
contract for bUNGEON provides exactly the needed blame information.
See Section 12.1 for a description of the bunGgeon benchmark.

Trace contracts also complicate the situation, however. By default,
blame goes to the party that added a value to the trace just before the
predicate fails. Since all prefixes of the trace satisfied the predicate, this
blame assignment seems to make sense. Yet, debugging real scenarios
suggests that the usual metatheoretic properties of a contract system
(blame correctness [38] and complete monitoring [43]) may not be
strong enough design guidelines for trace contracts.

3 A trace contract is one solution to eliminating this source of undefined behavior, but
there are others. For instance, Racket comes with an immutable? predicate that rec-
ognizes some immutable values. The keys of hash tables could be constrained to im-
mutable values, thereby imposing no performance overhead on mutable operations.
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To make this discussion concrete, imagine a scenario with five com-
ponents (A, B, C, D, E), where each contributes a number to a trace in
increasing order (<). Here is an execution:

Component A B C E D
Contribution 1.41 271 3.14 5.05 4.67

A trace contract would blame D because it contributes 4.67, causing the
< relation to fail. But E might have made a call to the API out of order,
and blaming just D does not even indicate a suspicion that some other
component could be at fault. It is often useful to know the source of all
values in a trace. After all, the idea behind trace contracts is to subject
multi-function interactions to contractual obligations.

A careful reader may argue that the problem is not with the blame as-
signment system but with the predicate. Rather, the contract should en-
force that E provides a real number in [4, 5] and < simply does not cap-
ture the specification to a sufficient degree. This claim is already true
about behavioral contracts because a predicate may always be weaker
than the intended property. And if the predicate is weaker than the
intended property, the contract system may blame the wrong party.

This argument overlooks the key premise of contract-system design:
blame assignment must help developers narrow the search space for
bugs, regardless of the strength of the predicate. To explain this idea rigor-
ously, Lazarek et al. [91] turn folk wisdom into two properties: blame
trail and search progress. The blame trail property states that either
(1) blame is assigned to the buggy component or (2) blame can be
shifted to another component by strengthening contracts. The search
progress property states that blame shifting always points to a compo-
nent closer to the bug than before the modification.

For trace contracts, both properties can be violated in practice. In
the example, strengthening contracts on D may not shift the blame,
meaning the blame trail property is violated. When strengthening a
trace predicate, the violating trace may decrease in length but there is
no reason to think a priori that the last contributor to a trace is always
closest to the source of a bug, violating the search progress property.
In short, the current blame assignment scheme points to the broken
contract, but more information is needed to help developers identify
the fault.

To address this problem, the implementation comes with three dif-
ferent ways of expressing blame assignments. Let a suspect be any party
that contributes to a trace. Here are the three supported mechanisms
for expressing blame in terms of suspects:

1. By default, the trace/c implementation does not report suspects.
Instead, the error message merely mentions the violated contract
and the violating party.
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2. The setof-suspect option forces the trace-contract system to
track the set of all suspects and report that information when
assigning blame. Often, there are just two parties to a contract.

3. The listof-suspect option causes the trace-contract system to
report the exact sequence of suspects, one per value in the trace.
This option supplies the most information, but it requires a large
amount of memory and may produce long error messages.

83 ADDITIONAL FUNCTIONALITY

Working with the trace-contract system pointed to limitations in the
existing behavioral-contract system. In particular, additional combina-
tors are needed to support the specification of interception points rele-
vant to trace contracts. Fortunately, these practically important combi-
nators are orthogonal additions to the base system. The trace-contract
library comes with additional functions for manipulating interception
points, resetting state explicitly, transforming collectors, and augment-
ing error messages with additional information.

Unlike behavioral contracts, trace contracts occasionally need to note
events even in the absence of an informative value flow. For example,
when a function receives no arguments, there is no natural interception
point. The trace-contract library supplies some combinators to create
interception points for such situations, e.g., apply/c and return/c.

Collector transformers wrap a collector and compute the value to
be added to a trace from the given one. An example is List/t, which
allows a programmer to tag values before they are appended onto a
trace. Typically, this tag adds information about the interception point.

In practical situations, the fail function may have to perform more
tasks than just informing the contract system of a failure. A software
system may have to recover from a contract failure, and in those cases,
a failure should reset accumulators to certain values. The author of a
trace contract may also wish to add information about the rationale
behind a failure. To this end, the trace-contract system supports the
augmentation of error messages.

84 IMPLEMENTATION OVERVIEW

An implementation effort also informs designers of what is needed in
a target host language to add a new feature. While the use of Racket’s
macro system greatly facilitates the addition of macro-expressible fea-
tures, it should not be much more effort to extend existing compilers di-
rectly with trace contracts, provided the target language supports cer-
tain features. The experience implementing trace contracts in Racket
suggests a few criteria.
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MONITORING HIGHER-ORDER VALUES A trace is a data structure
representing the sequence of values collected from various intercep-
tion points. In the context of a functional language, function calls and
returns are obvious interception points. Similarly, in an object-oriented
language, this same role is played by methods. Generally speaking, an
implementer’s first business is to decide where to enable interception
and how to enable the monitoring of value flow. In a higher-order lan-
guage, a contract system cannot determine statically where a particu-
lar call or return takes place. Thus, the target language’s runtime must
support monitoring value flows. The Racket implementation employs
proxy values [134] for interception. With proxies, it is straightforward
to perform interception in the presence of higher-order values.

Proxies are not the only option. For instance, the weaving mecha-
nism from aspect-oriented programming [85] can be used for a simi-
lar purpose. Roughly speaking, weaving injects code into a program
at specifiable program points. Although weaving is powerful, it is not
clear whether weaving can efficiently and effectively intercept values
in a higher-order language, as needed by the trace-contract design.

MUTATION WITHIN CONTRACTS Trace-contract checking is effect-
ful. When a collector receives a value, it mutably adds this value to a
trace. That being said, the underlying component subject to the trace
contract may be purely functional. Hence, the underlying language
must allow side effects in contracts, even though trace predicates them-
selves are pure functions.*

Trace contracts are expressible as shorthand in an underlying lan-
guage with higher-order contracts and mutable data structures. In the
terminology of Felleisen [47], the new feature is macro expressible.
Felleisen also shows that imperative assignment increases the expres-
sive power of a pure host language. By implication, trace contracts are
not expressible in a pure setting.

INTERCEPTION AND CROSSING TIMES A trace-contract system as-
sumes that crossing and interception time in the target contract system
are separate. As it turns out, the implementation of trace contracts ex-
posed this lack of separation in Racket’s contract system. Racket fails to
separate the two points in one combinator: the depended-upon argu-
ment contract in ->i [40]. A change to Racket’s contract system allows
trace contracts to distinguish these boundary crossings, meaning that
a collector may ignore arguments passing through a boundary that has
indy-party blame. This solution is sufficient to eliminate the duplicate-
collection problem without major changes to the contract system.5

4 Since collectors mutate traces, checking a collector is not idempotent. While idempo-
tence is sometimes considered an important property of contract systems [36, 53], it
often fails to hold for a variety of reasons. For example, Owens [118] and Hinze et al.
[78] observe violations of idempotence in several useful contexts.

5 Thanks to Robby Findler for help with this change to Racket’s contract system.
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MACROS NOT NEEDED An implementer can easily add trace con-
tracts to a language with a rich macro system, such as a Racket. While
macros are a convenient implementation mechanism for trace con-
tracts, they are not a requirement. The implementer of a language
such as SML, which elaborates surface syntax into a small kernel, can
add trace contracts with a similar addition to the front-end elaborator.

85 TRANSLATING TO EFFECT RACKET

(define-syntax #%module-begin
(syntax-parser
[(_ ?body ...)
#' (with ((ref-ctc-handler empty-store))
?body ...)1))

(define-syntax trace/c
(syntax-parser
[(_ ?var:id ?body:expr ?acc-fn:expr)
#'(let ([f ?acc-fn])
(self/c
(A
(Let ([?var (collector/c (ref #t) f)1)
?body)))) 1))

;; collector/c: Reference (Any Any — Any) — Any
(define (collector/c r f)
(A (v)
(define acc (f (ref-get r) v))
(ref-set r acc)
acc))

Figure 8.6: Trace Contracts in Effect Racket

A simplified version of trace contracts can be translated to Effect
Racket, as shown in Figure 8.6. Trace contracts require state, so pro-
grams must be wrapped in a top-level contract handler (hence the

%module-begin macro) providing the same interface as the mutable
reference implementation alluded to in Section 6.1. In Racket, redefin-
ing #%module-begin allows for a language or library to wrap an entire
module, often adding extra functionality [140]. For the definition of
trace/c itself, self/c is used to initialize the mutable reference that
holds the current accumulator. A collector contract is created that,
upon protecting a value, updates the stored accumulator using the
accumulating function f. The new accumulator, if it is truthy, causes
the contract check to pass.
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Parameter and trace contracts are suitable in a broad range of situations.
However, there is an important set of properties that is not served well
by either kind of contract. When the constraints on a value are spread
across several functions, perhaps in different modules, trace contracts
are not a natural solution. A cousin of trace contracts, called attribute
contracts, allows for a piece of state to be associated with a value and
manipulated easily across many functions.

9.1 EXAMPLES

Here is an excerpt from the documentation of Racket’s drawing library-
for the set-bitmap method of the bitmap-dc object:

Installs a bitmap into the drawing context (DC), so that
drawing operations on the bitmap DC draw to the bitmap.
A bitmap is removed from a DC by setting the bitmap to
#f. A bitmap can be selected into at most one bitmap DC,
and only when it is not used by a control (as a label) or in
a pen% or brush% (as a stipple).

Certainly this stipulation could be expressed as a trace contract with
globally initialized traces. However, the contract would be unwieldy
because the trace would have to be manipulated such that different
bitmap instances do not interact with one another. Instead of keeping
state in a trace, attribute contracts keep state in the proxy protecting a
value. Contracts mutate and check this piece of state, keeping track of
information about how the value may be used, without the underlying
value being aware of this information. From the perspective of the un-
derlying implementation, attribute contracts manipulate ghost state, i.e.,
state associated with a value that only the contract system can retrieve
and update.

To enforce this property, an attribute contract can associate with each
bitmap the set of values (i.e., drawing contexts, pens, brushes) that it is
installed into. So, calling the set-bitmap method of a drawing context
with a bitmap adds the drawing context to the bitmap’s set of DCs. This
attribute can then be read and updated by other methods.

Figure 9.1 shows a contract that is intended to protect newly con-
structed bitmaps. In addition to ordinary method contracts inside
object/c, the contract uses attribute/c to associate a bitmap with a
key-value pair. The key is a first-class value, called an attribute, that in
this case is referred to as bmp- key. Initially, the value of this attribute is
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(define bmp-key (make-attribute))
(define bitmap/c

(and/c
(attribute/c bmp-key (set))
(object/c — method contracts —)))

Figure 9.1: Contract for Bitmap Constructor

the empty set, representing that the bitmap is not installed anywhere.
Once the attribute is initialized for bitmap objects, contracts can update
and query the attribute.

;5 bitmap-install: Any — Contract
(define (bitmap-install/c x)
(attribute-update/c bmp-key (A (s) (set-add s x))))

;3 bitmap-uninstall: Any — Contract
(define (bitmap-uninstall/c x)
(attribute-update/c bmp-key (A (s) (set-remove s x))))

;; bitmap-exclusive: Any — Contract
(define (bitmap-exclusive/c x)
(and/c (attribute-satisfies/c bmp-key set-empty?)
(bitmap-install/c x)))

Figure 9.2: Bitmap Attribute Contracts

Figure 9.2 defines several functions for updating attributes. Two
contracts, bitmap-install/cand bitmap-uninstall/c, add or remove
an element from the set associated with the bmp-key attribute using
attribute-update/c. The bitmap-exclusive/c contract checks that
the given bitmap is not installed anywhere and updates the attribute
such that the set contains only x. Note that the quoted documentation
implies that a bitmap can be used as the stipple of multiple pens and
brushes. The exclusivity restriction is present only when it comes to
installing a bitmap in a drawing context.

Any object that has a method that installs a bitmap needs to be
adjusted to check and then update the bitmap’s attribute. Shown
in Figure 9.3 are contracts for the bitmap drawing context and pen
that demonstrate how to turn the informal constraint into a checked
contract. These two contracts are similar but are not the same. For
bitmap-dc%/c, the set-bitmap method gets a dependent function con-
tract where the first argument is the target of the method call, i.e., the
bitmap drawing context. Using uninstall-self/c, the contract ex-
tracts out the bitmap currently installed in the drawing context. This
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(define bitmap-dc%/c
(class/c
— method contracts —
[set-bitmap
(-1 ([self (uninstall-self/c
(A (self) (send self get-bitmap)))]
[bmp (self) (or/c #f (bitmap-exclusive/c self))])
[res void?])])

(define pen%/c
(class/c
— method contracts —
[set-stipple
(->i ([self (uninstall-self/c
(A (self) (send self get-stipple)))]
[bmp (self) (or/c #f (bitmap-install/c self))])
[res void?])1))

;5 uninstall-self/c: (Any — Any) — Contract
(define (uninstall-self/c get)
(self/c
(A (self)
((or/c #f (bitmap-uninstall/c self))
(get self)))))

Figure 9.3: Bitmap Drawing Context and Pen Contracts

value is either #f or an actual bitmap, in which case the bitmap is
uninstalled. The bitmap-exclusive/c contract on the bitmap argu-
ment ensures that the bitmap is exclusively installed in the drawing
context. A similar contract is placed on pens, although exclusivity of
the bitmap is not required.

9.2 IMPLEMENTATION OVERVIEW

While attribute contracts resemble trace contracts, in the sense that they
are effectful, their implementations in Racket do not share code. At-
tribute contracts require a mechanism to store information alongside
a value without otherwise affecting it. Languages such as Clojure [76]
have a well-known feature called metadata that allows for arbitrary
maps to be associated with values. In Clojure, metadata is used fre-
quently enough that it has dedicated reader syntax.

Racket does not have the same metadata facility, but it can be simu-
lated using impersonator properties. In Racket, impersonators [134] are
the most general term for a proxy value. Impersonators can have prop-
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erties that carry information. In the contract system, this feature is pri-
marily used to support the value-contract function for extracting the
contract from a protected value.

Attribute contracts use impersonator properties to store, retrieve,
and update information for contract checking. Not all values, such
as strings, can be impersonated. Such values cannot be used with
attribute contracts. For this reason, the mutable key example from
Section 8.1 cannot be expressed as an attribute contract.

9.3 TRANSLATING TO EFFECT RACKET

(define-syntax #%module-begin
(syntax-parser
[(_ ?body ...)
#' (with ((ref-contract-handler empty-store))
?body ...)1))

(define (attribute/c key val)
(make-contract
#:1late-neg-projection
(A (blm)
(A (subj negq)
(meta-set subj key (ref val))))))

(define (attribute-update/c key proc)
(A (subj)
(define r (meta-ref subj key))
(ref-set r (proc (ref-get r)))
#1))

(define (attribute-satisfies/c key pred)
(A (subj)
(pred (ref-get (meta-ref subj key)))))

Figure 9.4: Attribute Contracts in Effect Racket

An implementation of attribute contracts in Effect Racket is shown
in Figure 9.4. Similar to the translation of trace contracts in Section 8.5,
the program needs a top-level contract handler for mutable refer-
ences. The definition of attribute/c uses make-contract to produce
a value with the desired attribute attached. Attributes are set and re-
trieved from values via the meta-set and meta-ref functions, respec-
tively. These functions come from an auxiliary library that provides
a Clojure-like metadata facility for Racket. The attribute-update/c
and attribute-satisfies/c contracts update and check the attributes
of values, respectively, using the same metadata functions.



Part III

PRACTICAL

Implementations do not exist in a vacuum but within a
larger software ecosystem. Effectful contracts interact with,
and benefit from, features in the host language. This part
of the dissertation looks at how trace contracts can be com-
bined with other language constructs in powerful ways.



DOMAIN-SPECIFIC NOTATIONS

Contract systems stand to benefit from domain-specific notations for
specifications. In other words, it should be easy to plug in any num-
ber of domain-specific specification languages into a contract system.
Effectful contracts in general, and trace contract in particular, improve
in readability when paired with domain-specific notations. This chap-
ter presents several illustrative examples of how to combine trace con-
tracts with domain-specific languages (DSLs) tailored for writing spec-
ifications (Section 10.1). These domain-specific notations are defined
using Racket’s syntax-spec system (Section 10.2), which brings about
many advantages (Section 10.3).

10.1 EXAMPLES

The examples in this section demonstrate the integration of trace con-
tracts with domain-specific notations. Each contract builds in complex-
ity, starting from simple regular expressions, all the way up to entirely
graphical means of expressing specifications.

SPECIFYING WITH REGULAR EXPRESSIONS Racket comes with a
built-in library, racket/draw, for drawing images. The library provides
a thin wrapper around a low-level graphics API written in C. As such,
the wrapper must protect against client behavior that would induce
undefined behavior at the C level. One instance of undefined behavior
occurs with drawing context (DC) objects.

To produce an image with racket/draw, a developer must first
choose a DC representing the desired output device. There are many
such contexts that all share a common interface. Part of this interface
is a collection of methods for managing the pages of a document:
start-doc, start-page, end-page, end-doc. Clients must call these
methods in a particular order. It does not make sense to call, e.g.,
end-doc before start-doc. Moreover, all drawing commands must
occur within a page.

Here is a regular expression that describes a valid complete sequence
of method calls:

start-doc, (start-page,draw’, end-page)*, end-doc

This regular expression is not yet suitable for trace-contract monitoring.
A trace contract also checks every incomplete sequence of method calls,
not just the complete sequence. So, this regular expression has to be
adapted to accept any prefix of the complete sequence.
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(define-re SINGLE-PAGE
(seq/close 'start-page (star 'draw) 'end-page))

(define-re DC-RE
(seq/close 'start-doc (star ,SINGLE-PAGE) 'end-doc))

Figure 10.1: DC Regular Expressions in Racket

Shown in Figure 10.1 is an adapted version of the regular expression
using a library for constructing automata. The define-re form com-
piles the given regular expression to a finite-state automaton. Within
define-re, the seq/close form denotes a regular expression that ac-
cepts, not just the given sequence, but any prefix of that sequence.

(provide
(contract-out
[make-ps-dc (-> (dc/c DC-RE))]))

(define (dc/c mach)
(trace/c ([s symbol?])
(object/c
[start-doc (apply/c [s 'start-doc])]
[start-page (apply/c [s 'start-page])]
[draw-point (apply/c [s ‘'draw])]
[end-page (apply/c [s 'end-page])]
[end-doc (apply/c [s 'end-doc])])
(accumulate mach
[(s) (A (acc x)
(define acc* (acc x))
(if (machine-accepting? acc*) acc* (fail)))l)))

Figure 10.2: Contract for Drawing Contexts

Figure 10.2 shows a trace contract that enforces the protocol defined
by DC-RE. Given a finite-state automaton, dc/c produces a contract for a
DC where the method call sequence is governed by the regular expres-
sion. In the body of dc/c, a trace contract is wrapped around an object
contract specifying each of the DC methods. There is only a single trace,
s, that contains symbols corresponding to method calls. The apply/c
combinator provides the collector with a constant value each time a
protected method is called. To check the protocol, the trace predicate
uses the state of the automaton as the accumulator. So long as the au-
tomaton is accepting, the contract is satisfied. The trace contract is then
used in the codomain of make-ps-dc, a function producing PostScript
(PS) drawing contexts.
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(provide
(contract-out
[make-eps-dc (-> (dc/c EPS-RE))]))

(define-re EPS-RE
(seq/close 'start-doc ,SINGLE-PAGE 'end-doc))

Figure 10.3: Encapsulated PostScript Contract

However, there is more than one kind of DC. In particular, an En-
capsulated PostScript (EPS) drawing context has a slightly different
constraint than an ordinary PS context. Since an EPS file is intended
to be embedded in a larger document, it can only have a single page.
Supporting EPS is easy since dc/ c abstracts over the regular expression.
Checking a different protocol requires passing in a different finite-state
automaton to dc/c, as shown in Figure 10.3.

VALUE-DEPENDENTPROTOCOL Imagineaboard-game framework
that pits player components against one another. A natural implemen-
tation of a player is as an object with methods that correspond to game
stages. Each player expects that these methods are called in a certain
order, which may depend on the state of the game. Methods calls must
satisfy a value-dependent, multi-function, temporal property.

argument: false

Figure 10.4: Game Protocol Diagram

Figure 10.4 displays a state-transition diagram for an automated
board-game player. States in this diagram indicate the order in which
the referee component must call the player’s methods. Labeled edges
represent transitions that depend on either an argument value or a re-
turn value. Unlabeled edges represent independent transitions. Since
there are several possible transitions for some states, this protocol
demands a non-deterministic finite-state automaton (NFA).

The diagram dictates that players must implement five methods:

1. A setup method that delivers the game pieces.
2. A pickmethod that asks a player to choose some game objectives.

3. A play method that grants a player the right to take a turn. The
result is either a request to perform an action on the game state
or a request for more game pieces.
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(provide
(contract-out
[player-factory (-> strategy/c player/c)l]))

(define PLAYER-NFA
(nfa {setup} {setup pick play more win done}

[setup (list 'setup ) {pick}]
[pick (list 'pick ) {play}]

[play (list 'play (? action?)) {play win}]

[play (list 'play (? more?)) {play more win}]

[more (list 'more ) {play win}]

[win (List 'win #t) {setup}]

[win (Llist 'win #f) {done}l))

(define player/c
(trace/c ([x any/c])

(object/c
[setup (->m game-map? (list/t 'setup x))]
[pick (->m set? (list/t 'pick x))]
[play (->m state? (list/t 'play x))]
[more (->m list? (list/t 'more x))]

[win (->m (list/t 'win x) any/c)])
(accumulate PLAYER-NFA
[(s) (A (acc x)
(define acc* (acc x))
(if (machine-accepting? acc*) acc* (fail)))l)))

Figure 10.5: Player Contract

4. If the referee gets this second kind of request in response to play,
it may invoke the player’s more method. It may also skip this call,
depending on the game state.

5. The player is granted turns and more pieces until the referee
discovers an end-game condition and then informs the player
whether it won or lost. The player may participate in the next
game only if win is called with #t.

A trace-contract specification for the protocol is shown in Figure 10.5.
In this particular software system, a factory function creates automated
players from a strategy and returns player objects that implement the
above five methods. The contract on this factory method attaches a
trace contract to each player object. As a result, every player object must
obey the order of method calls specified in Figure 10.4.

The protocol is specified as an NFA over an alphabet containing the
names of methods, along with the specific arguments or return values
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of two of them: play and win. The trace contract, as before, simulates
the automaton with accumulate. For setup, pick, and more, the transi-
tion is independent of run-time values. For play and win, the transition
is value dependent. The play method uses the action? and more? pred-
icates to determine the next set of states. It does so using Racket’s (? p)

pattern that match a value if the predicate p holds. The win method de-
termines the successor state based on its boolean-valued argument.

CONCISEOBJECT CONTRACTS The Maplterator property from Java’s
API [117] states that an Iterator, created from a Collection, which
is itself derived from a Map, cannot be used after the Map has been mu-
tated. The word “after” suggests a temporal relationship—a need to
look back at whether a mutating method of Map has previously been
called. Past-Time Linear Temporal Logic (PLTL) [96] is one suitable
choice for stating the Maplterator property:

(define-pltl map-iterator-violation
(/\ "next (¢ 'mutate)))

PLTL comes with the primitive temporal operators e ¢ (pronounced
“previous”) and ¢ S (pronounced “since”). Otherwise, PLTL looks
like first-order logic. All other temporal operators, for example ¢ ¢
(pronounced “once”), are derived notions. With these operators, an in-
valid sequence of method-call events is easy to express: next/\¢ mutate.

(define map-iterator/c
(object-trace/c
#:refutes (pltl map-iterator-violation)
[next (->m any/c) 'next]))

(define map-collection/c
(object-trace/c
[iterator (->m map-iterator/c)]))

(define map/c
(object-trace/c
[keys (->m map-collection/c)]
[remove (->m any/c void?) 'mutate]
[set (->m any/c any/c void?) 'mutate]))

Figure 10.6: First Attempt: Checking the Maplterator Property

Instead of employing trace/c, a developer can use object-trace/c
with a PLTL formula to create an enforceable contract. Figure 10.6
shows a first attempt at a contract for Maplterator. The three displayed
definitions express a specification involving three methods across two
classes, with an intervening class that bridges the gap. Two meth-
ods from the Map class (remove and set) mutate the Map object. The
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intent with these contracts is that any iterator derived from a col-
lection of keys becomes unusable when the underlying map is mu-
tated. The #:refutes clause requests that the PLTL formula named
map-iterator-violation is translated into a predicate over the trace
of method-call events. If the contract ever discovers that the formula is
satisfied, then the system signals a violation. In addition, each method
signature can specify a value to be added to a trace associated with the
object when the method is invoked. For these contracts, those values
are the symbols 'next and 'mutate.

As is, these contracts are not quite right. An object-trace/c con-
tract knows only about method calls for the current object. Therefore,
map-iterator/c sees only calls to the next method and is unaware of
any mutations to the underlying map.

(define (map-iterator/c map/c)
(object-trace/c
#:refutes (pltl map-iterator-violation)
#:include map/c
[next (->m any/c) 'next]))

(define (map-collection/c map/c)
(object-trace/c
[iterator (->m (map-iterator map/c) )1))

(define map/c
(object-trace/c
[keys (->m (map-collection/c this-contract) )]
[remove (->m any/c void?) 'mutate]
[set (->m any/c any/c void?) 'mutate]))

Figure 10.7: Checking the Maplterator Property

Figure 10.7 displays an adaptation such that map-iterator/c can ac-
cumulate information about other relevant method calls. To express
this relationship, the contracts for collection and iterator objects be-
come functions that accept map/c itself. The object-trace/c form uses
the keyword this-contract which, similar to this for objects, refers to
theobject-trace/c contractitself. Even though the map-collection/c
function just passes this contract through tomap-iterator/c, the latter
actually makes use of it. The #: include clause informs the contract sys-
tem that events from the trace for map/c are to be injected into the trace
for map-iterator/c. Consequently, map-iterator-violation, which
refers to the 'mutate event, now works correctly when placed in the
#:refutes clause.
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These contracts look simple, but the underlying property is sophisti-
cated. Consider the scenario where an iterator is created, the underly-
ing map is mutated, and then another iterator is created. It should be
the case that the first iterator is invalidated, while the second one re-
mains usable. In other words, these two iterators require independent
pieces of state. Some events, such as mutations to the underlying map,
are shared with both. Other events, such as calls to next, are particu-
lar to a specific iterator and are not shared. All this careful state man-
agement is handled automatically. Conversely, manually constructing
defensive checks to correctly keep track of this information is difficult.

MIXING DOMAIN-SPECIFIC NOTATIONS Interfaces should be ex-
pressed as directly as possible, using the notation most appropriate
for the property at hand. Sometimes a single interface benefits from
mixing several domain-specific notations.

Consider an idealized TCP interface, similar to the one found in Java,
which consists of four classes: a TCP manager, a TCP listener, an input
stream, and an output stream. A TCP manager, when given a port num-
ber, is responsible for creating a TCP listener that deals with the given
port. The purpose of a TCP listener is to accept client connections. For
each connected client, a TCP listener produces an input and output
stream for receiving and sending data, respectively.

Many languages, including Java, guarantee the following properties
of TCP sockets: (1) StreamClose states that input and output streams
can be used until either the stream itself is closed or the underlying
TCP listener is closed; and (2) PortExclusivity states that at any point in
the program, there can be at most one active TCP listener per port. The
Java standard library uses defensive checks to enforce these properties.

Contracts can express both properties concisely, and allows for a sec-
ond or third TCP implementation to be monitored easily. The two prop-
erties, though, warrant different notations. The StreamClose property
can be expressed as a regular expression:

(define-re port-re
(seq
(star 'use)
(opt (union 'close-stream " (close-listener , )))))

This regular expression accepts traces of method-call events that use
a stream (input or output) until it has been closed, or the underlying
listener is closed. There is one unusual feature here, which is the close
listener event. It carries the port number of the corresponding listener,
which is simply ignored in port- re using a wildcard pattern. Why the
close listener event carries a port number will be clear in a moment.

The PortExclusivity property is not easily expressed as a regular ex-
pression. Another formalism, known as quantified event automata
(QEA [14]), is a good match.
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(define manager-gea
(gea
(V port)
(start ready)
[-> ready " (listen ,port) listening]
[-> listening " (close-listener ,port) ready]))

Figure 10.8: QEA for PortExclusivity

Figure 10.8 shows a QEA for PortExclusivity. A QEA is similar to an
ordinary finite-state automaton, but it is enriched with quantifiers. By
quantifying over a variable, a QEA describes a family of automata: one
per instantiation of quantified variables. Intuitively, manager-qgea con-
structs a two-state automaton for every possible port number. These
automata are created on demand, though, to avoid unnecessary over-
head. Each automaton starts in the ready state and transitions to the
listening state when a new TCP listener is created on that port. When
the listener is closed, the automaton moves back to the ready state.
Each listener event must carry a port number, so the event can be dis-
patched to the appropriate automaton.

Using object-trace/c, these logical specifications can be connected
to the TCP interface itself, as shown in Figure 10.9. Two differences
from the example in Figure 10.7 are worth pointing out.

First, tcp-manager/c uses the dependent method contract ->dm [133]
to produce an event that is dependent on the argument to listen
This contract form, similar to ->i, permits naming the arguments and
result—binding those names for use in the event constructor. Here,
the listen event contains the port argument.

Second, tcp-listener/c uses #:extend to contribute events to the
parent manager/c contract. As shown in Figure 10.7, #:include allows
events to flow from “ancestor” to “descendant” object. By contrast, the
#:extend keyword allows events to flow in the other direction, from
“descendant” to “ancestor” object. Specifically, the TCP manager (i.e.,
the parent) must be aware if a TCP listener (i.e., the child) is closed on
a particular port, because then that port becomes available for listen-
ing once again according to PortExclusivity. Using #: extend manager/c
tells the contract to communicate close-listener events from the listener
to the manager. It turns out that StreamClose also requires information
to flow in the other direction because input and output streams (i.e.,
the children) must be closed if the underlying listener (i.e., the par-
ent) is closed. This direction is covered using #:include listener/c.
In sum, this example demonstrates that object-trace/c can accom-
modate information flow in both directions, even within the same in-
terface, and can mix distinct domain-appropriate notations to check all
desired properties.
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(define (input-stream/c listener/c)
(object-trace/c
#:satisfies port-re
#:include listener/c
[read-byte (->m byte?) 'use]
[peek-byte (->m byte?) 'use]
[close (->m void?) 'close-stream]))

(define (output-stream/c listener/c)
(object-trace/c
#:satisfies port-re
#:include listener/c
[write-byte (->m byte? void?) 'use]
[close (->m void?) 'close-stream]))

(define (tcp-listener/c manager/c port)
(object-trace/c
#:extend manager/c

[close (->m void?) " (close-listener ,port)]
[accept (->m (values (input-stream/c this-contract)
(output-stream/c this-contract)))]))

(define tcp-manager/c
(object-trace/c
#:satisfies manager-qgea
[listen (->dm ([port (integer-in 0 65535)1])
[res (tcp-listener/c this-contract port)])
“(listen ,port)l]))

Figure 10.9: The TCP Interface

HYBRID SYNTAX In the board-game example, a state-machine di-
agram (Figure 10.4) was manually translated into DSL code (Fig-
ure 10.5) for use in a trace contract. Of course, there is no guarantee
that the code corresponds to the diagram. Worse, the diagram and the
code are likely to get out of sync as the library evolves.

Ideally, the state-machine diagram itself would be a part of the code.
With hybrid textual-graphical syntax [ 4], or hybrid syntax for short, a
library author can describe a protocol graphically and have the corre-
sponding run-time-checking code generated automatically.

Consider a different example, though. The authentication protocol
for a REST API may constrain an object with three methods: auth, req,
done. This protocol imposes the following constraints on method calls:
(1) the auth method to sends credentials and receives an authentica-
tion token in response; (2) the req method, with an endpoint URL and
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a valid authentication token, requests data; and (3) the done method
ends the authenticated session.

;3 [Sequenceof Message] -> Boolean
;3 Returns whether the sequence of messages satisfies the
;; authentication protocol.

(def satisfies-auth-protocol?

(auth user‘?‘pejss?) : false? e

(done (==-1)) : bool? )

e
e

(auth user? pass?) : token? [t] s

///
.

(req url? (==t)) : data?
//

Figure 10.10: Hybrid Syntax for an Authentication Protocol

Figure 10.10 shows how hybrid syntax can express this protocol di-
rectly as a diagram. The automaton graphical form allows a developer
to interactively construct an automaton directly inside a larger textual
file. At compile time, the graphical form elaborates to a predicate that
determines if a sequence of method calls satisfies the protocol. An
eagle-eyed reader may notice that the language here is Clojure and
not Racket. The hybrid-syntax system, for practical reasons, was built
in ClojureScript [5]. Such a file can be imported within Racket via a
lightweight bridge [2].

The automaton consists of three states: start, good, and end. The
shaded gray background of start shows that it is the starting state.
Each state indicates, via the transitions emanating from it, the set of
methods a client module can call. For example, in the good state, a
client module can call either the req or done method. A transition is
labeled with a method name plus predicates for the arguments and
result. If the arguments and result satisfy the predicates specified on
the transition, then the automaton moves to the next state. If no such
transition exists, then the protocol must have been violated, and the
contract violation is reported.

In Figure 10.10 the transition corresponding to a successful authen-
tication binds the returned token to the variable t (shown in square
brackets). The scope of this binding includes all downstream transi-
tions. Any transition in scope can then use this variable in predicates.
For example, the expression (== t) constructs a predicate that deter-
mines if a value is equal to the token.
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;; [Sequenceof Message] -> Boolean
;5 Returns whether the sequence of messages satisfies the
;3 Android MediaPlayer protocol.

(def satisfies-android-protocol?

(set-source file-desc?)

0

(prepare )
(segkeint?)

/ )

Prepared

(start )
(seekeint?)

(preparé ) "

Sstop) (seekiint?)

p sty T (pawse) )
Stopped J&—— {stop)

Figure 10.11: Android MediaPlayer with Hybrid Syntax

@

The diagram presented in Figure 10.10 is just one instance of a
general-purpose graphical form. To demonstrate its versatility, Fig-
ure 10.11 shows a slightly simplified implementation of the Android
MediaPlayer API [69] protocol, written with the same graphical form.

Interacting with the graphical form, a programmer performs GUI
gestures to create new states, delete existing ones, add or delete tran-
sitions, edit the source and destination of a transition, turn states into
starting or accepting states, rename states (via a text box), edit the pred-
icates labeling a transition (via a text box), and change what variables
are bound. These gestures are intuitive. For example, creating a new
transition merely requires clicking and dragging from the source state
to the destination state. Altering the properties of a transition involves
selecting the transition and clicking the edit button.

The graphical form’s elaborator analyzes code on the transitions to
determine the necessary binding structure. Specifically, the elabora-
tor creates a separate function for each transition with the appropriate
parameters, and provides the run-time system enough information to
supply the correct arguments to each function. Syntax and type errors
in the specification are raised at compile time. For example, if a transi-
tion predicate specified a dependency on a variable that is not in scope,
the elaborator would signal a compile-time error.

10.2 IMPLEMENTATION OVERVIEW

Implementing new domain-specific notations necessitates a means of
syntactically extending a language. This section discusses how the
notations in the previous section were created with the syntax-spec
metaprogramming system [10].
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Figure 10.12: System Diagram for Domain-Specific Contracts

Figure 10.12 summarizes how domain-specific notations work within
a contract system. Each software component is combined with a logi-
cal formula (the gray frame). The component’s developers choose the
most appropriate logic to use, based on the property to be enforced.
These logic languages come with translators that turn these specifi-
cations into predicates, which then become pieces of trace contracts.
In the diagram, the enforcement mechanism comes into play with
the sequences of values that components exchange. The contract code
checks the sequence of values that a component receives and sends
out. Gray borders on values in Figure 10.12 indicate that values may
acquire a proxy layer that contains specification-checking code from
the component’s interface [56, 134].

A metaprogramming system enables programmers to extend their
language with new linguistic constructs and collect them in libraries or
frameworks. Ideally, it permits blurring the distinction between built-
in constructs and user-defined ones. Importantly, metaprogramming
facilities exist inside the programming language. Depending on the cho-
sen language, metaprogramming facilities can be used in the small and
large: from quick syntactic abbreviations, all the way up to full feature-
rich special-purpose DSLs.

Different languages have vastly different metaprogramming mech-
anisms. Some languages provide lightweight syntactic metadata: dec-
orators in Python and annotations in Java. In other languages, such
as Ruby, the syntax is sufficiently flexible, and the semantics suffi-
ciently dynamic, that a DSL can be built without any explicit language
support. Another major class of metaprogramming facilities are those
based on (syntax-tree) macros that perform compile-time rewriting.
Before code generation, the compiler applies these rules to obtain the
program in a core syntax—a process called macro expansion. Languages
in the Lisp family, such as Clojure [76], are especially well-known for
macros, but others including Rust and Scala have adopted them too.
Parenthetical syntax is not necessary [61].
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Racket is well-suited for defining domain-specific notations as it
provides many tools for language-oriented programming [52]. The
syntax-spec metaprogramming library is one such tool. Two features
of syntax-spec make it suitable for creating new notations. First, de-
velopers can declaratively specify the language grammar, making it
straightforward to develop and maintain. Second, syntax-spec is bind-
ing aware, meaning it understands the scope of variable declarations.
It can reliably provide services such as rename refactoring and deter-
mine the free variables of an expression.

Formulas ¢:=p|—d|dVI|IdANP|IX.D|led|dSD

(syntax-spec

(nonterminal pltl-formula
#:allow-extension pltl-macro
#:binding-space pltl-space
(neg f:pltl-formula)
(disj2 fl:pltl-formula f2:pltl-formula)
(conj2 fl:pltl-formula f2:pltl-formula)
(exists x:pltl-var f:pltl-formula)
#:binding (scope (bind x) f)
(previous f:pltl-formula)
(since fl:pltl-formula f2:pltl-formula)
p:pltl-pat))

Figure 10.13: Grammar of PLTL (Simplified)

Figure 10.13 shows the Backus-Naur form (BNF) representation of
the PLTL grammar and the syntax-spec definition for the same gram-
mar in Racket. These grammars directly correspond to each other and
it is easy to go back and forth. In order to make the syntax-spec gram-
mar binding aware, a developer adds binding specifications, such as the
one for the exists form. Here, the binding specification states that in
Ix.¢, the variable x is bound in ¢.

Implementing the static semantics of a domain-specific notation is
almost as simple as declaring its grammar. Take the monitorability cri-
teria of PLTL [16], which says that a well-formed PLTL formula can be
turned into a predicate over a trace if it satisfies the judgment on the left
side of Figure 10.14. The equivalent Racket code is on the right side of
the figure. The Racket implementation pattern matches on the syntax
using the syntax-parse system [33]. Each rule in the monitorability
judgment corresponds to a branch in the match. In the PLTL pattern
case, the function uses the free variables (fvs) feature of syntax-spec.*

A straightforward addition to this static semantics is a monitorability search proce-
dure. Some tools, such as MonPoly [16], attempt to rewrite non-monitorable formulas
into monitorable ones if possible.
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(define (monitorable? stx)

pH P
(syntax-parse stx
POV [(disj2  g)
(and (equal? (fvs #'f)

Py = (fvs #'g))
Py Eb Po < Py (monitorable? #'f)
Py Upy O AY (monitorable? #'g))]

[(conj2 (neg f) g)

Po =& (and (subset? (fvs #'f)
py H U Pe C Py (fvs #'g))
Py Upy - —dSYP (monitorable? #'f)

(monitorable? #'g))]

Py - P — similar cases —

Py - Py < Py [(conj2 f g)
PpUpy = PSP (and (monitorable? #'f)
(monitorable? #'g))]
Py - ¢ py - U [(exists (x:id ...) f)
Py Upy - G AY (monitorable? #'f)]
— similar cases —
pUXI pH ¢ [(neg _) #f]
4};;?5;;57 o ed [p #t1))
p =¥v(p)
pEP

Figure 10.14: Static Semantics for PLTL (Simplified)

Finally, if a formula satisfies the static semantics, it can be translated
into a predicate. Figure 10.15 shows a simple translation for PLTL that
translates each formula into a tree of structs, which is then run using
the PLTL interpreter provided by the library.

While Racket and syntax-spec make realizing domain-specific no-
tations easy, the general architecture presented in Figure 10.12 should
apply to many programming languages with varying degrees of ease.
A programming language with powerful metaprogramming facilities
reduces the notational overhead on programmers; without such facili-
ties, an implementer may have to resort to shallow or deep embedding
techniques [66], which may impose an extra burden on developers.

10.3 BENEFITS OF DOMAIN-SPECIFIC NOTATIONS

While the use of syntax-spec greatly facilitates the declaration and
translation of new notations, this very simplicity obscures a number
of aspects that come “for free” but may have to be realized separately
in alternative implementations. When implemented with syntax-spec,
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(define-syntax (translate stx)
(syntax-parse stx

[(_ (neg T)) #'(neg-s (translate f))]

[(_ (disj2 f g)) #'(disj2-s (translate f) (
translate g))]

— similar cases —

[( (exists (x ...) f)) #'(exists-s (set 'x ...) (
translate f))]

[( x:id) #'x]

[(_ p) #' (translate-pattern p)]))

Figure 10.15: Translator for PLTL (Simplified)

domain-specific notations signal syntax errors at the appropriate level,
have direct support from the IDE, and are syntactically extensible.

STATIC ERRORS A syntax-spec language can automatically synthe-
size reasonable syntax errors for the new notation. For example, ill-
formed PLTL formulas are identified like this:

> (define-pltl ¢
(S 'next))
expected more terms in: (S 'next)

In ¢, the S operator expects another operand, so the error points out
an arity mismatch.

Similarly, a syntax-spec implementation can issue an informative
message when static checking fails. As mentioned in the preceding sec-
tion, a syntactically well-formed PLTL formula may be invalid because
it cannot be translated into a predicate (as is):

> (define-pltl U
(3 (t) (— (o 1)))

not monitorable in: (— (e t))
Even if a PLTL formula is well-formed and valid, it can still be misused:

> (+ 1V 13)

cannot use PLTL formula here: V¥

To realize these benefits, the define-pltl form creates definitions in a
separate binding space, as required by the one-line #:binding-space op-
tion in Figure 10.13. Languages, including domain-specific notations,
are often composed of several syntactic categories that are mixed at
particular interface points. For example, Java has a syntactic category
of expressions and types that are interleaved in a certain way; defini-
tions created in one do not exist in the other. The syntax-spec imple-
mentation of PLTL creates its own binding space, distinct from the one
for expressions, meaning that a reference to a PLTL name from an ex-
pression context signals a static error.

75



10.3 BENEFITS OF DOMAIN-SPECIFIC NOTATIONS

USEREXTENSIBILITY PLTL comes with just two primitive temporal
operators. Although derived operators add no expressive power to the
logic, they are necessary for writing concise specifications. While the
PLTL library could provide direct support for such derived operators,
doing so has the serious downside of complicating the static semantics,
the translator, and the runtime system, which would have to deal with
each kind of operator separately.

Instead, a syntax-spec language can be made syntactically exten-
sible with the #:allow-extension option. This option opens up the
pltl-formula nonterminal for simple macro extensibility. A user can
define additional operators with ease:

(define-pltl-rule T
(? (A _ #1)))

(define-pltl-rule (¢ ¢)
(ST ¢))

The syntax-spec-generated define-pltl-rule form defines a syntac-
tic transformation that rewrites all instances of T and ¢ ¢ in a PLTL
formula: T is rewritten to a predicate that always returns #t, meaning
a machine that succeeds on all traces of collected events; and ¢ ¢ is
rewritten to a formula that requires nothing to be true until ¢ holds.

These syntactic transformations are seamlessly integrated into PLTL.
For example, a user can write a utility library with these abbreviations
and export them for use in other modules. In short, user-extensible
transformations make the PLTL library flexible to use and simplify its
implementation tremendously.

IDE INTEGRATION The syntax-spec library facilitates integrating
new notations with Racket IDEs, including DrRacket [54] and Racket
Mode for Emacs [75].

(define-pltl-rule (# )1 bound occurrence
(s T o))

(define-pltl ma’b—iterator—violation
(A '"next (¢ 'update)))

Figure 10.16: Binding Arrows for PLTL

Figure 10.16 shows one such service. When a user hovers over an
identifier, arrows are drawn from the binding occurrence of an identi-
fier to every reference. Here, the definition of ¢ points to its use in the
formula. The IDE has a rich understanding of the binding structure of
alanguage, which can be used to support reliable program transforma-
tions including rename refactorings.
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A CASESTUDY IN COMPOSITION

Imagine developing a channel-based concurrent application that con-
forms to a complex protocol specification. Trace contracts can help en-
force such protocols, increasing confidence that the software is correct.
To do so, a programmer must first translate the protocol into a pred-
icate over channel messages. The predicate may be written as a ordi-
nary function in the host language or using a domain-specific specifi-
cation language as discussed in Chapter 10. Then, the programmer se-
lects communication channels of interest and attaches trace contracts
to monitor the message flow.

Importantly, trace contracts compose with other contracts via com-
binators, including ordinary channel contracts as defined by Racket’s
contract library. Composition is an essential characteristic of well-
designed contract systems [42], avoiding the need to manually de-
fine a special primitive form of channel-protocol contracts. Protocol
enforcement over channels simply decomposes into two orthogonal
contract mechanisms.

This chapter starts with an illustration of the approach with a simple
client-server example (Section 11.1) before scaling up to correctness
properties of the two-phase commit algorithm (2PC) for distributed
systems (Sections 11.2 and 11.3).

11.1 CLIENT—SERVER EXAMPLE

Consider a concurrent application with one client and one server that
communicate via a channel. For the purposes of this example, the
details of the channel itself do not matter; it could be a synchronous
channel or an asynchronous channel. A simple protocol may state that
when either process receives a number n, it sends to the other process
the number n + 1.

(put 0) /7 (get 1) /7 7\ (put 2)

Figure 11.1: Client-Server Protocol Diagram

Figure 11.1 shows a state machine diagram for an interaction where
the client kicks off communication with 0. The alphabet of the machine
consists of channel actions (i.e., put or get) paired with the value that
crosses the channel. A similar state machine can be constructed for the
server, where the put and get actions are swapped.
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11.1 CLIENT—SERVER EXAMPLE

(provide
(contract-out
[client-start (-> client/c any/c)]
[server-start (-> server/c any/c)]))

(define (client-start ch)
(for/fold ([acc 0])
([k (in-range ROUNDS)])
(channel-put ch acc)
(addl (channel-get ch))))

(define (server-start ch)
(for ([_ (in-range ROUNDS)1)
(channel-put ch (addl (channel-get ch)))))

Figure 11.2: Client and Server Functions

Figure 11.2 shows the implementation of two functions following
the protocol for several rounds of communication. The contracts for
client-start and server-start state that they are functions whose
channel arguments must satisfy client/c and server/c, respectively,
and guarantee nothing about the return value.

(define client/c
(trace/c ([n natural?])
(channel*/c (list/t 'put n) (list/t 'get n))
(accumulate — check state machine )))

(define server/c
(trace/c ([n natural?])
(channel*/c (list/t 'put n) (list/t 'get n))
(accumulate — check state machine —)))

Figure 11.3: Contracts for Client-Server Communication

Figure 11.3 defines client/c and server/c as trace contracts over a
channel*/c contract. The channel*/c contract constrains inputs and
outputs of a channel. For instance, (channel*/c even? odd?) stipu-
lates that the channel must carry even numbers outbound and odd
numbers inbound. The client/c trace contract ensures that when
client-start sends a number k across its channel, the value (list
'put k) is added to trace n and checked with the state machine.

This example demonstrates how compositionality separates con-
cerns. The channel*/c contract is responsible for monitoring values
flowing across a channel, while trace/c is responsible for enforcing a
temporal sequence on those values.
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11.2 BACKGROUND ON TWO-PHASE COMMIT

11.2 BACKGROUND ON TWO-PHASE COMMIT

Two-phase commit (2PC) is a fundamental protocol in distributed sys-
tems. It is designed to address the distributed commit problem: given
a pending transaction and a process group, ensure that either all the
processes commit to the transaction or that none of them do. 2PC is
mediated by a distinguished leader and assumes that the rest of the
group (dubbed the followers) is static. As its name suggests, the basic
2PC protocol proceeds in two phases:

vOoTING PHASE The leader sends the same QuERy to all processes in
the group. Upon receiving a QuERy, followers send back a vork,
either YEs or No.

COMPLETION PHASE Upon receving votes from every follower, the
leader sends the same pEcisioN to all processes in the group. If
the leader received any no vote, then the DEcIsION is ABOrT. Other-
wise, the DEcisiON is commiT. Upon receiving a pecision, followers
send back an acknowledgement ack.

Consider a naive monitor design that requires a programmer to
(1) implement oracle processes that are assumed to be correct and
(2) monitor that the output of the real processes exactly matches that
of the oracles. Such a methodology imposes far too many restrictions
on implementations. It is an overspecification. There are perfectly legal
extensions of 2PC that do not exactly match one another, nor do they
exactly match the basic protocol. For instance, if the network is unreli-
able, it would be natural for processes to send redundant messages to
compensate for drops. If the oracles implement basic 2PC, then redun-
dant messages would be rejected as a breach of protocol. Even if the
oracle monitors implement a fault-tolerant variant of 2PC (e.g., with re-
dundant messages), it is still too prescriptive because implementations
would need to use the exact same array of fault-tolerance measures
(e.g., the same amount of redundancy). Furthermore, the monitors
should not require that the channels they monitor be used only for
2PC, lest they become impractical to install into real environments.

Supposing one proceeded with the naive-oracle approach anyway,
the question arises about what it means for processes to “match” the
monitors. A common technique for proving that two programs (e.g.,
the specification and the implementation) “match” is to develop a
simulation arqument that relates sequences of observable behaviors be-
tween the two programs. This method is ubiquitous in the study of
compiler correctness [94] and cryptography [22]. Most commonly,
traces are proven to be either equivalent or inclusive. Enforcing trace
inclusion dynamically ensures that the trace, at each point in time, is
always among the set of legal traces for a protocol invocation.

Another question to consider is the matter of liveness. Usually specifi-
cations abstract over implementation details and, as such, tend to ben-
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efit from richer assumptions than their real-world counterparts. For
instance, viewing the basic 2PC protocol in a world without failures
and perfect networking, then the protocol is live—it can always make
progress. By relaxing those assumptions, as required by the real world,
it is no longer live. Although there are tools that can verify liveness
properties, dynamic enforcement is concerned solely with safety prop-
erties. As such, the specification must phrase all constraints as safety
properties while remaining consistent with the protocol.

To recap, the design constraints are as follows: (1) allow some flex-
ibility, e.g., with respect to redundant and irrelevant messages; and
(2) stay within safety properties.

11.3 IMPLEMENTING TWO-PHASE COMMIT

This section describes, at a high level, contracts that enforce the 2PC
protocol. The implementation composes channel and trace contracts,
where the trace predicate uses a domain-specific notation based on
state machines. Contracts can enforce the protocol both at the leader,
which sees all messages, and at followers, which see only a subset of all
messages. Since 2PC is quite a sophisticated protocol, this case study
demonstrates that these techniques can scale to larger examples.

Msgom:=q|o|d|a
Query > q == (query 1 Vv)

Vote 5 o0 = (vote r yes) | (vote T no)
Dec > d = (decision r commit) | (decision 7 abort)
Ack 3 a == (ack r commit) | (ack T abort)

Round 21 := N
Val 3 v

Figure 11.4: Grammar of Messages

To monitor 2PC, it is first necessary to define a notion of safety that,
once specified, can be enforced using a domain-specific notation. Fig-
ure 11.4 defines the grammar of messages that may pass between pro-
cesses via channels.

Definition (Safety). A trace is safe if and only if its relevant messages
satisfy Gapless Ordering, Cooperation, Unanimity, and Consistency.

Safety relies on a notion of relevance and four subordinate proper-
ties. These definitions will be given in turn.
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Definition (Relevancy). For an instance of 2PC with round identifier
T and process group g, a message is relevant if and only if it is a 2PC
message with round r that is from or to a process in g.

Under this definition of relevancy, monitors filter out “noise” when
checking traces. Notice that redundant messages are relevant and are
considered when checking traces.

Definition (Gapless Ordering). Consider a partial order on messages
based on the reflexive-transitive closure of the following relationships
between message types: QUERY < VOTE < DECISION < Ack. For any
message types t,t' where t’ < t, if a fresh message m of type t appears
in the sequence, then a fresh message m’ of type t’ appears before m.
A fresh message is one that has not appeared before in the sequence.

Definition (Cooperation). The leader sends messages to all followers
and waits on messages from all followers. Followers send messages to
the leader and wait on messages from the leader, meaning (1) a fol-
lower’s vork is preceded by a QUERy from the leader, (2) a leader’s DE-
cIsioN is preceded by a vote from each follower, and (3) a follower’s
Ack is preceded by a pecisioN from the leader. Furthermore, the leader
does not consider the protocol complete until it has received an ack
from each follower."

Definition (Unanimity). The final decision is commit if and only if all
VOTES are YES.

Definition (Consistency). Messages of the same type, and from the
same process, must have equal values.

Monitors enforcing 2PC for leader and follower processes, based
on these formal definitions, were implemented using trace contracts.
These contracts look similar to the example from Figure 11.3. except
the trace predicate itself is far more complicated. Messages are tagged
with a direction (send or receive) and a process ID (source or destina-
tion). For instance, the message (put 0 (query r val)) in a trace at
the leader indicates that the leader is sending a query to follower 0. The
message would appear on 0’s trace as (get leader (query r val)).

Violating safety is a fatal error, immediately stopping the offending
process. In principle, a process might receive a message that violates
safety. However, because outbound messages are monitored and vio-
lations are fatal, the system fails early, and a receiving process never has
the chance to see an unsafe message.

The following propositions are not used to define or enforce safety
but can be helpful to keep in mind when examining traces. In partic-
ular, given a trace, they allow one to reason about the safety of minor
variations of that trace.

Note that this definition does not say that requests are followed by responses because
that stipulation is a liveness property.
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Proposition (Prefix Closure). Any prefix of a safe trace is safe.

Proposition (Safety Preserved Under Projection). Consider the pro-
jection from a trace at the leader to a trace at one of its followers, de-
fined by mapping all messages to (from) that follower to messages
from (to) the leader. If a leader trace is safe, then so is its projection
at the follower.

The remainder of this section demonstrates how the trace contract
determines conformance with the 2PC protocol via a series of example
traces, some of which satisfy the protocol, and others that do not. Each
of these example traces is assumed to be observed at the leader.

(put 0@ (query r 42))
(get 0 (vote r yes))
( (decision r commit))
(get 0 (ack r commit))

Figure 11.5: Basic 2PC (Two Processes)

For the 2PC instance r involving the process group {leader, 0} the
trace in Figure 11.5 is safe. This trace exhibits the simplest case of “basic”
2PC, with one follower that votes Yes (Line 2), allowing the leader to
commir (Line 3). The trace consisting of solely Lines 2—4 is unsafe since
it violates Gapless Ordering,.

(put 0@ (query r 42))

(put 1 (query r 42))

(get 1 (vote r yes))

(get 0 (vote r no))

(put 1 (decision r abort))
(put 0 (decision r abort))
(get 0 (ack r abort))

(get 1 (ack r abort))

Figure 11.6: Basic 2PC (Three Processes)

For the 2PC instance r involving the process group {leader, 0, 1}, the
trace in Figure 11.6 is safe. Building on the previous example, another
follower is added that votes No (Line 4). As such, the leader decides
to aBort (Lines 5-6). Once again, this trace adheres strictly to “basic”
2PC. Safety is preserved if Lines 3 and 4 are swapped, or Lines 5 and
6, or Lines 7 and 8.

For the 2PC instance r involving the process group {leader, 0}, the
trace in Figure 11.7 is safe. In this trace, the 2PC protocol has not yet
finished; the leader is still in the completion phase, since it has not yet
received all acks. Line 2 is an example of a redundant messsage: there is
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(put 0 (query r 42))

(put 0 (query r 42))

(put 0 (decision r' commit))
(put 0 foo)

(get 0 (vote r yes))

(put 0 (decision r commit))
(get 0 (vote r yes))

Figure 11.7: 2PC in Completion Phase

already a QUERY to 0 in the trace (Line 1), but the two are consistent, so
it is safe. Lines 3—4 are examples of irrelevant messages: the DECISION on
Line 3 concerns a different instance of 2PC (r'), and the roo on Line 4
is not a 2PC message at all. The vote on Line 7 is an example of a stale
message. After receiving the vote on Line 5, the leader transitions to
the completion phase, at which point all votes are stale. Informally, a
redundant message is stale when it can no longer affect the outcome of
the protocol (e.g., a follower receives another query after it has already
cast a vote). More formally, a relevant message is stale if and only if
(1) it is a QUERY sent or received during the completion phase, or (2) it
is a votE sent or received during the completion phase, or (3) it is sent
or received after all acks have been received by the leader.

(put 0@ (query r 42))
(put 1 (query r 42))
(get 0 (vote r yes))
( (decision r commit))

Figure 11.8: Cooperation Violation

For the 2PC instance r involving the process group {leader, 0, 1}, the
trace in Figure 11.8 is unsafe. It is unsafe because Line 4 violates Co-
operation; the leader sends a pecisioN without receiving vores from
all followers (follower 1 is missing). Because follower 1 did not vote,
the system may be left in an inconsistent state if follower 1 is unable to
successfully commit.

(put 0@ (query r 42))
(put 1 (query r 43))

Figure 11.9: Consistency Violation

For the 2PC instance r involving the process group {leader, 0, 1}, the
trace in Figure 11.9 is unsafe. It is unsafe because Line 2 violates Con-
sistency: there is another Query (Line 1) with a different value.
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(put 0 (query r 42))
(put 1 (query r 42))
(get 1 (vote r yes))
(get 0 (vote r no))
(put 1 (decision r commit))

Figure 11.10: Unanimity Violation

For the 2PC instance r involving the process group {leader, 0, 1}, the

trace in Figure 11.10 is unsafe. Notice how Line 5 violates Unanimity:

there is a No vorte (Line 4) but the leader decides to commir (Line 5).
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Part IV

EMPIRICAL

Given the implementations and case studies of effectful
contracts seen thus far, it is worth considering how well
they might work in the real world. Two concerns, regarding
the run-time performance and learning curve of effectful
contracts, are addressed in the upcoming chapters.



PERFORMANCE ASSESSMENT

Imposing contracts on components impacts the performance of the
overall system; effectful contracts increase this cost. Hence, a key ques-
tion is how much a system is affected in realistic scenarios. This chapter
presents an evaluation of the performance cost of trace contracts and at-
tribute contracts.! For performance, the relevant question is what kind
of fixed cost the mechanism imposes on programs, not the variable cost
of the programmer-defined predicates. A performance evaluation can-
not answer questions concerning the variable cost of trace predicates.
Effectful contracts, like ordinary contracts, are property agnostic. Thus,
the variable cost of run-time enforcement depends largely on the prop-
erty being checked. This variable cost is solely under the purview of
the programmer and not the contract system. State initialization, mu-
tation, and calls to predicates are all included in the fixed cost. Bench-
marks (Section 12.1) measuring the fixed-cost performance of effectful
contracts show a tolerable performance overhead (Section 12.2).

12.1 BENCHMARKS

Nine benchmarks represent real-world uses of Racket that offer oppor-
tunities for adding effectful contracts. The MEMorYy benchmark turns
the current-memory-use example from Chapter 5 into a pathological
stress test. The FuTURE benchmark consists of a large existing Racket
library equipped with attribute contracts, plus an application that
stresses the functionality. Four of the benchmark programs (punGeoN,
JPEG, LNM, TETRIS) are variants on programs from the standard grad-
ual typing benchmark suite [71]. Three benchmarks (pararLow, FisH,
TICKET) are programs developed for university courses. All bench-
marks have been modified so that they do not measure I/O operations.

DATAFLOW computes a constant propagation analysis for a simple
imperative language. A trace contract, similar to one from Chap-
ter 8, checks the monotonicity of a transfer function during fixed-
point iteration.

DUNGEON randomly generates a maze. A trace contract on the random-
number generator ensures that it does not exhaust a fixed pool
of random numbers. The contract must keep track of how many

Parameter contracts are omitted because an existing performance evaluation [57] rig-
orously measures the cost of continuation marks—the run-time mechanism underly-
ing parameter contracts.
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times the random function is called, so its accumulator is just a
natural number and the check is cheap.

runs a “That’s My Fish” board-game tournament. There are two
trace contracts: a referee contract and a player contract.

The referee contract ensures that the referee calls back players
in the specified order unless the game state does not permit the
player to take a turn. The contract is a promise made by the ref-
eree to all players. To enforce this promise, the contract is placed
on the referee’s list of player objects. A collector receives a new
value every time the referee calls the take-turn method on any
player. The trace contract then checks for conformance with the
promised callback order on the players, including skipping over
players that are momentarily prohibited from taking a turn.

The player contract enforces a sequence property on its method
calls. In other words, the player components ensure that their in-
dividual methods are called in a specific order. This contract is sim-
ilar to the value-dependent temporal protocol from Figure 10.4.
It is independent of, and orthogonal to, the referee contract.

FUTURE Visualizes the performance of a program using futures. Fu-

JPEG

LNM

tures are a run-time mechanism for incrementally adding par-
allelism to programs [137]. The future visualizer [136] uses a
version of Racket’s drawing library that has been equipped with
attribute contracts to enforce multi-call properties. A full list of
these properties is enumerated in Chapter B. Some properties
were originally monitored by the drawing library using ad-hoc
checks, but others were not checked at all.

parses a JPEG input stream and writes it to an output stream. A
trace contract guarantees that operations on the output stream
occur in the correct order. Like the board-game example in Fig-
ure 10.4, it checks every stream-related function call against a fi-
nite automaton. Formulating the trace contract involves creating
several contracts that share the same accumulator (the state of
the finite automaton) using #:global.

draws plots of performance measurements from gradually typed
programs. Like FUTURE, this benchmark uses the variant of Racket’s
drawing library equipped with attribute contracts.

MEMORY reports memory consumption including garbage-collected

blocks. The trace contract ensures that current-memory-use re-
turns increasing numbers over time; it is called 10,000 times in a
tight loop, the results of which are graphed on a line chart using
Racket’s plot [142] library.
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TETRIS simulates and displays a recording of a Tetris playthrough.
This benchmark also uses the variant of Racket’s drawing library
equipped with attribute contracts.

TICKET runs a “Ticket to Ride” board-game tournament. Like risH,
TICKET has both a referee and a player contract. The referee con-
tract enforces a promise that the referee calls back players in the
specified order. This trace contract is significantly simpler than
the one for risH, because every player can execute an action in ev-
ery game state. The player-side trace contract enforces the correct
sequence of method calls. The board-game example presented in
Figure 10.4 is a simplified version of this contract.

12.2 RESULTS

I performed the experiments on a dedicated Linux machine with an
Intel Xeon E3 processor running at 3.10 GHz with 32 GB of RAM and
with Racket 8.6 CS. Each benchmark configuration was repeated 100
times with a maximum timeout of two minutes.

Benchmark | SLOC | Protects | Checks
DATAFLOW 502 1 584
DUNGEON 589 0 | 538,000
FISH 1,452 2,608 | 63,175
FUTURE 1,721 16,360 | 234,444
JPEG 1,481 0| 54,556
LNM 564 168 3,248
MEMORY 59 0| 10,000
TETRIS 334 6,807 | 125,570
TICKET 1,427 384 | 15,794

Table 12.1: Basic Properties

Table 12.1 first lists the number of essential lines of source code
(SLOC) for each program, including the contract and its auxiliary
functions. None of the trace contracts require much code. risu and
TICKET contain the most complex ones but the others are relatively
simple. Even the most complex trace contracts are concise. Since pred-
icates are ordinary code, they can make use of existing data structure
libraries and those libraries serve as workhorses in many cases.

The Protects column reports the number of times a trace contract
monitors a new value during the steady state of a program’s execution.
In other words, it is the number of times a trace contract evaluates its
body-contract expression. Each time, there is some overhead due to

88



12.2 RESULTS

allocating references for accumulators and creating collector contracts.
Some benchmarks have a zero entry because all the contracts are initial-
ized before the main body of the program begins, for example, when
dependencies are being loaded. The Checks column states the number
of times each trace or attribute predicate is checked.

Benchmark | Disabled Enabled Predicate | Overhead
DATAFLOW 83+3 87+2 274 +3 5%
DUNGEON 2441 4+ 38 2715+ 46 2713 £33 11%
FISH 7780470 8340 4+ 82 8366 + 80 7%
FUTURE 6075 + 54 7083 £83 7502 4+ 86 17%
JPEG 276 +5 303+6 316 +6 10%
LNM 52248 53249 534+ 9 2%
MEMORY 141+ 4 164 +4 164 +4 16%
TETRIS 3040 +24 3566 £ 36 3927 £43 17%
TICKET 13062 +£149 | 13186+ 170 | 131994182 1%

Table 12.2: Performance Measurements

Table 12.2 shows the timing measurements. Benchmarks were exe-
cuted at two levels: Disabled where trace contracts are disabled, and
Enabled where they are enabled. These measurements are the mean
number of milliseconds it takes to run each benchmark, averaged over
100 samples, along with the standard deviation. As mentioned, the per-
formance evaluation is primarily concerned with the fixed cost of ef-
fectful contracts. For Enabled, each predicate is replaced with a trivial
one that always returns #t. The Predicate column lists the performance
numbers where effectful contracts are enabled and the predicate actu-
ally checks the desired property. In other words, it also measures the
variable cost of the contracts. Such predicates are straightforward im-
plementations and are not heavily optimized. Finally, the Overhead
column shows the percent overhead of Enabled compared to Disabled.

The overhead of the contract mechanism is relatively low, some-
where between 1% and 17%. As is, some benchmarks basically sim-
ulate worst-case scenarios. For example, MEMORY just calls a simple
function in a tight loop, so contract checking takes up a large por-
tion of total execution time. By contrast, benchmarks that are closer
to real-world programs, such as Ticker, incur a low overhead. Thus,
the evidence suggests that the contract mechanisms do not exhibit
pathological performance. These measurements do not exercise an
industrial-strength implementation of effectful contracts but rather a
direct translation of the design. With some additional performance
engineering, it is likely to perform even better.
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TEACHING SOFTWARE SPECIFICATION

Effectful contracts, even in their most principled form, are worthless
if developers cannot put them into practice. A broad-spectrum evalu-
ation of effectful contracts must consider whether humans can make
use of them. To that end, this chapter describes a redesign of North-
eastern’s Logic and Computation course focusing on the art of correct
software design using contracts, including effectful ones.

Software correctness is well-recognized as essential in many fields.
Showing that software is correct can be split into two activities: specifica-
tion and verification. Specification formally characterizes (some aspect
of) the intended behavior of software, whereas verification shows, us-
ing various methods, that software conforms to its specification. While
these two activities may seem equally important, in practice, time spent
articulating a specification is often dwarfed by time spent working on
verification. This imbalance can also be present in courses about soft-
ware correctness. If specifications and theorems are written by instruc-
tors, then students get little to no practice with the first, crucial step of
creating correct software. If the theorems are relatively simple, then the
complexity of the programs students reason about might never exceed
single-digit line counts, leading them to wonder how this experience
relates to real software engineering.

Rather than thinking of specifications as instructor-written prob-
lems that students solve by carrying out proofs, specification can be
made the primary activity, avoiding most work on proofs. Indeed,
while writing correct software requires both specification and verifica-
tion, arguably it is specification that is more challenging and critical.
Without a specification, any proof, successful or not, is worthless. Even
projects that are never subject to formal verification can benefit from
clear descriptions of functional correctness, security properties, or
other behavioral invariants. For this reason, specification should be
a core part of any undergraduate curriculum, and it should come as
early as in the first year.

The course redesign is based on two intertwined components. First,
contracts and property-based testing are used to capture sophisti-
cated (type) invariants and logical properties. Contracts can express
dependent-type invariants, introducing students to the power of type-
based reasoning without any background on the complex topic of de-
pendent type systems. Property-based tests (PBT) [28] also provide
a relatively low-barrier means of expressing complex invariants about
code. One way to understand this approach to PBT is that students
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practice writing theorems, but proofs are deferred to the approxima-
tion produced by a PBT engine.

Second, students use a pedagogic functional language built espe-
cially for the course, dubbed the Logical Student Language (LSL), that
includes not only constructs for contracts and property-based testing,
but also linguistic support for non-trivial programs. For example, one
assignment has students implement a distributed snapshot algorithm
and express snapshot consistency as property-based tests, relying on
message-passing concurrency and an accompanying visualizer. Lin-
guistic support allows such problems to be tractable, even for students
in their second semester of programming, by eliminating the incidental
complexity that typically arises without full control over the language.

As part of this new course, students were introduced to a simplified
version of trace contracts and used them to enforce temporal proper-
ties in their programs. For instance, one assignment had students build
an idealized memory allocator and write down memory-correctness
properties as predicates over traces of memory-relevant events. Stu-
dents had no issue completing this assignment and some reported in a
post-course interview that they found the memory-correctness project
particularly helpful. First-year students were able to write non-trivial
trace contracts, suggesting that more experienced developers should
be able use trace contracts as well.

13.1 BACKGROUND

For the last two decades, Northeastern’s Logic and Computation
course has aimed to connect logical reasoning with systematic pro-
gram design. Historically, the course functioned as an introduction
to both specification and verification, first using the ACL2s theorem
prover [37], and more recently using the Lean theorem prover [35].
The only prerequisites for the course are a single semester of program-
ming and discrete mathematics; it was originally envisioned, and is
still often realized, as a second-semester freshman course.

Unfortunately, a phenomenon familiar to those teaching formal
methods has stymied this effort: time spent on verification far sur-
passes time spent on specification. In an educational context, this
results in the class being either too hard for students to learn, or struc-
tured such that the majority of the semester is dedicated to proofs of
relatively uninteresting theorems.

Originally, the course was taught using the custom language Drac-
ula, a frontend to the ACL2 theorem prover [ 45, 119]. This tool was
used for Logic and Computation as well as an upper-level course on
software engineering at another institution. While the goal was theo-
rem proving, Dracula also included a mechanism for property-based
testing (called DoubleCheck). In a paper summarizing the first few
years of this experiment, Page et al. [119] report that, across two uni-
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versities, only ten to twenty percent of students ended up being able to
use ACL2 via Dracula effectively. Interestingly, the authors also report
that DoubleCheck, their property-based testing framework, “helps stu-
dents with one of the trickiest task[s] of using logic in programming,
namely, the transition from ideas to formal statements” [119]. While
the authors had plans, never fully realized, to improve Dracula to ad-
dress some issues, the latest research [82] indicates that beginners still
face challenges using interactive theorem provers.

More recently, when the course has been taught using Lean, stu-
dents learned to write proofs about natural numbers and lists, but little
more. Attempting to shift this balance seems impossible as significant
practice with basic theorems over simple inductive types is necessary
to build the skills needed to complete large proofs.

It is tempting to think automation might help, but after the ex-
periments with Dracula, the course was taught for many years using
ACLz2s, which has world-class automation support. This does not seem
to help. In particular, knowing how to drive sophisticated automatic
provers, especially intermediate lemma identification, may be a more
advanced skill than constructing proofs manually—even if the result-
ing proofs are much smaller.

While the intent of the class was always to introduce students to for-
mal reasoning about software, perversely, students using Lean largely
reported that the class had no bearing on software development what-
soever (Section 13.5). A frank assessment of this decades-long experi-
ment is that at best students are introduced to the idea of mechanized
proof, unconnected to the software work they do in other courses or
on internship, and at worst they learn a few details about an esoteric
tool they will never use again.

13.2 REDESIGN OVERVIEW

REVIEW OF PROPOSITIONAL LOGIC (WEEK 1) The course begins
with a review of propositional logic, but turned into computation:
propositional formulas become boolean-valued functions, and truth
tables become exhaustive sets of unit tests. This exercise introduces
students to the idea that logical reasoning can be viewed as compu-
tation. Additionally, students see how translating formulas into code,
and truth tables into unit tests, can uncover mistakes just by running
the tests.

ATOMIC DATA (WEEKS 2—-3) The second unit explores the idea of
specifications as code, but in the setting of atomic data types such as
numbers and strings. Students translate these informal descriptions of
how functions should work into boolean expressions that relate inputs
and outputs.
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INCREASING COMPLEXITY (WEEKS 4—8) The third unit of the
class explores both data and properties of increasing sophistication.
Students deal with recursive data, higher-order functions, and data
abstraction via contracts. Additionally, this unit transitions the home-
work assignments from introductory practice to somewhat complex
projects (Section 13.4).

ADVANCED TOPICS (WEEKS 9—12)  The latter part of the semester
covers mutation and aliasing along with an assignment building
an idealized memory allocator. Pairing the lecture content, which
presents aliasing puzzles, with a large project where aliasing is a cen-
tral theme allows students to explore the concepts deeply even in a
relatively short period of time. Enforcing memory invariants serves to
enrich the content and helps with debugging.

This unit of the course also introduces concurrency with a simple
message-passing implementation and accompanying visual debug-
ger, all built into LSL. Students first implement a warm-up homework
using message passing and, once graded, implement the Chandy-
Lamport concurrent snapshotting algorithm. As with the memory
allocator, the project is small enough to be achievable, but complex
enough that students realize that correctly implementing it is much
easier if they write down invariants and ensure they are preserved as
the code runs.

SPECIAL TOPICS (WEEKS 13-14) The last two weeks are left for
special topics. Typically, the special topic is about interactive theorem
proving, though different instructors may choose different topics. The
structure of Logic and Computation, and the placement of the last
exam within the semester, means that this content is not subject to any
assessment; it serves as bonus material for students who are interested
in further enrichment. The last week is a nice place to introduce tools
like Lean, as students who are interested can learn about them but the
central learning outcomes of the course are not affected.

13.3 THE LOGICAL STUDENT LANGUAGE

Creating a new programming language, especially a pedagogic one,
is a substantial undertaking. The effort is worthwhile if it reduces fric-
tion, as LSL does in two ways. First, LSL is a superset of the pedagogic
language used in Fundamentals 1, Northeastern’s first-semester course
on program design (prior to Fall 2025). Students enter the course with
a full semester of experience in its syntax and semantics, allowing
them to immediately acquire new skills without rehashing functional-
programming basics. Second, LSL is integrated with the DrRacket [54]
pedagogic IDE—also the same one used in their first course. Thus, the
workflow students are already familiar with is completely unchanged.

93



13.3 THE LOGICAL STUDENT LANGUAGE

LSL also augments DrRacket to support certain learning objectives.
For example, it integrates with Tyche [68], an interface for inspecting
random generators, to help discover weak property-based tests.

LSL IN A NUTSHELL LSL is an extension of the Intermediate Stu-
dent Language (ISL) from How to Design Programs (HtDP) [51]. ISL
is a simple pedagogic functional programming language. Traditional
introductions to programming teach language features (e.g., variables,
assignment, conditionals, loops) and leave program design as an im-
plicit skill to be acquired through practice. HtDP treats the craft of
constructing correct and maintainable software explicitly. The lan-
guage becomes merely a vehicle through which these universal skills
are taught. As such, HtDP provides a sequence of increasingly sophis-
ticated pedagogic languages, including ISL, to maximize learning and
minimize distractions [49]. For example, error messages are tailored
to freshmen students by employing familiar terminology instead of
technical jargon [97].

< - = »  Unit Tests
€—00-0-0-0—NID EN-SEN S BO-I-0-I-0—88-8-0—>  Property Tests

CEeeeeeeeeeesn-»  Verification
Figure 13.1: Gradual Specification

LSL adds contracts and property-based testing to ISL, enabling the
gradual approach to specification shown in Figure 13.1. HtDP focuses
on unit tests, or what amounts to pointwise specifications. Such tests
do not cover much of the input space but are a necessary first step.
Property-based tests randomly generate inputs, enabling coverage of a
greater region of the input space. Getting the properties and generators
right can take some work but yields tangible benefits.

The choice of contracts over types is due to three unique features of
contracts. First, contracts consist of ordinary code and as such allow
expressive specifications without the cognitive overhead of a sophisti-
cated type system. In class, students regularly write specifications that
are dependent, temporal, and intensional. Designing a type system to
accommodate all of these properties, let alone one that is appropriate
for beginners, seems infeasible. Contracts allow students to freely ex-
plore the space of possible specifications, building on their existing pro-
gramming intuitions instead of putting them aside.

Second, contracts are a precise mechanism for enforcing properties.
To remain decidable, type systems, or any static technique, must ap-
proximate program behavior. Since contracts monitor programs at run
time, a violation guarantees that there is a true inconsistency between
the specification and a program execution.
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Third, and relatedly, contracts supply a concrete counterexample
when a program violates its specification. Each error message high-
lights the violated contract and comes with a witness to the violation.
Students can use this witness to debug their program or specification.
In contrast, type systems supply error messages in terms of failure to
satisfy a particular syntactic discipline—easy for experienced program-
mers to resolve but less so for novices.

BASIC CONTRACTS IN LsL In HtDP, students follow the Design
Recipe, a checklist that includes a step for writing a comment above
each function definition with its signature.

Here is an example function in the style of HtDP:

;7 only-non-negative: (List Integer) — (List Natural)
(define (only-non-negative lon)
(filter (A (n) (or (zero? n) (positive? n))) lon))

Comments are inert, but their simplicity and flexibility are useful be-
cause students can write informal signatures that may be challenging
to express formally (e.g., signatures with refinements or untagged
unions). These specifications are perfectly reasonable, even if they
thwart conventional type systems. Eventually, it becomes valuable to
consider how to make such statements formal. The same example can
be realized in LSL with the following contract:

(: only-non-negative (-> (List Integer) (List Natural)))
(define (only-non-negative lon)
(filter (A (n) (or (zero? n) (positive? n))) lon))

The : annotation associates a contract with the given function name,
monitoring the specification at run time. These annotations mirror the
signature conventions in HtDP, providing a smooth path from informal
prose to formal specifications." Violations of the contract raise a run-
time exception.

Without a program or test cases to exercise the functionality of
only-non-negative, the contract serves no purpose other than docu-
mentation. One way to test if the function satisfies the contract is to
use property-based testing. Every contract built into LSL, including
higher-order ones, comes with a generator and shrinker [88]. Thus,
students are able to run property-based tests for their specifications
with a single line: (check-contract only-non-negative).

In this example, the check-contract form generates random lists
of integers based on the domain contract for the given function, calls
the function repeatedly with these arguments, and ensures that the
codomain contract holds. Close integration between the contract sys-
tem and random-generation capabilities makes PBT convenient to use
for first-year students.

Crestani and Sperber [32] explore similar ideas, but LSL is a much larger departure
from the teaching languages than the extensions described in their work.
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If a property-based test encounters an inconsistency, it reports a con-
crete, shrunk counterexample as an error message:

discovered a counterexample
counterexample: (only-non-negative (list -1))
error:
only-non-negative: contract violation
expected: Natural
given: -1
blaming: anonymous-module (as server)

Following DrRacket’s printing conventions, the counterexample can
be copy-and-pasted into the REPL to reproduce the error. The error
message also comes with blame information pointing to the party that
violated the contract [56]. The (as server) parenthetical indicates that
the function itself violated the contract. If a caller of the function pro-
vided an invalid argument instead, then the error would display the
(as client) parenthetical.

Additionally, DrRacket highlights the violated contract in the pro-
gram’s source. Tight cooperation between LSL and the DrRacket IDE
permits affordances that are especially useful for first-year students.
Such affordances are one advantage specialized pedagogic languages
have over ordinary libraries.

(define (longer-than-in? 1los)
(A (x)
(andmap (A (s) (>= (string-length x) (string-length s)))
los)))

(: longest-string
(Function (arguments [los (NEList String)])
(result (ALLOf String (longer-than-in? 1los)))))
(define (longest-string los) — implementation —)

Figure 13.2: Dependent Function Contract in LSL

Strengthening the signature of a function is one way to increase con-
fidence in the correctness of code. Figure 13.2 displays a dependent
function contract that ensures the longest-string function returns a
string whose length is greater than or equal to all others in the input
list. This dependent function contract has two pieces: one constraining
the argument and another constraining the return value. The argument
is expected to be a non-empty list of strings and is bound to the vari-
able los for use in the result contract. The result is expected to be a
string that satisfies (longer-than-in? los), ensuring that the string
is longer than any other in los. Here, ALL0f represents the conjunction
of several contracts, just as and/c does in Racket.
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A programmer can also define custom contracts, the most basic of
which is an immediate (or flat) contract [56]. An immediate is a first-
order check: a predicate for determining whether values satisfy the
contract. Immediates stand in contrast to higher-order contracts, like
function contracts, that must interpose on all future interactions with
a value. LSL comes with many built-in immediates, and students can
define their own.

(define-contract Even
(Immediate
(check (A (x) (and (integer? x) (even? x))))
(generate
(A (fuel)
(* 2 (contract-generate Integer fuel))))
(shrink
(A (x)
(let ([y (/ x 2)])
(if (even? y) y (subl y)))))))

Figure 13.3: Contract for Even Numbers

Figure 13.3 defines a contract for even numbers that also includes
a generator and shrinker for property-based testing. The check clause
contains the mandatory predicate. The generate clause expects a func-
tion that takes fuel, a natural number corresponding to how hard the
generator should try to construct a value, and returns a value that must
satisfy the contract. This particular generator delegates to the genera-
tor for Integer, via contract-generate, to return an even number. The
shrink clause takes a function that returns, if possible, a smaller value
than the one given.

Contracts can also handle the kinds of data definitions seen in lan-
guages with algebraic data types. Here is the definition of a binary tree
parameterized by the type of element:

(define-struct leaf [valuel])
(define-struct node [left rightl])
(define-contract (Tree X)
(One0f (Struct leaf [X])
(Struct node [(Tree X) (Tree X)1)))

Property-based testing propagates automatically: if X supports genera-
tion, so does (Tree X).

ENFORCING DATA ABSTRACTION Data abstraction is a technique
whereby implementation details of a particular data type are hidden
from some pieces of code but not others. Specifications about data ab-
straction fit well in Logic and Computation. First, data abstraction is
easily motivated as a desirable software-engineering principle. Robust



13.3 THE LOGICAL STUDENT LANGUAGE

system design relies on information hiding to decrease the coupling
between components [121]. Second, most programming languages of-
fer data-abstraction mechanisms—whether through access modifiers,
existential types, or name mangling. Students should be familiar with
the concept and understand why it matters. Finally, data abstraction
provides a nice on-ramp to properties that are not just about correct-
ness. Many important properties fall into this category, from security
properties to resource constraints.

In type systems, data abstraction is enforced via universal and exis-
tential types [102]. The key difference between the two rests in which
pieces of code must treat data abstractly. With universal types, imple-
mentation details are hidden from the server component. With existen-
tial types, implementation details are hidden from the client compo-
nent. Dynamically enforced analogues, universal and existential con-
tracts [72, 98], seal and unseal values to ensure programs treat certain
values abstractly. Here is an example of an existential contract:

(define-struct counter-pkg (make incr get))

(define-contract Counter
(Exists (T)
(Struct counter-pkg [(-> T) (-> T T) (-> T Natural)l])))

The Counter contract specifies the signatures of three functions con-
tained in a counter-pkg structure, where T refers to an abstract type.
There can be several packages implementing Counter that keep the
representation of T hidden from clients.

Existential contracts are a mechanism and not the only one that may
be used to achieve data abstraction. Most first-year students taking
Logic and Computation concurrently take a course on object-oriented
programming in Java. After discussing data abstraction via existential
contracts, students implement pure objects in LSL using structs with
functions (i.e., methods) as fields. In such an encoding, closures are a
data-hiding mechanism [105]. Seeing two different forms of data ab-
straction allows for a comparison of their respective tradeoffs [31].

MUTATION Eventually, students must be exposed to effectful pro-
grams, and in particular, programs with mutable state. Students
should have a deep understanding of mutable state, be made aware
of how mutation complicates reasoning about programs, and have the
tools needed to manage that additional complexity.

As in most programming languages, LSL supports both variable and
value mutation. Variables are mutated with the set! form:

(: n Integer)
(define n 1)
(set! n 2)
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When a variable is mutated, the contract associated with the variable
is checked again. Value mutation is available for structs but only when
they are explicitly declared as mutable:

(define-mutable-struct posn [x y])

(: p (Struct posn [Integer Integer]))
(define p (posn 1 1))

(set-posn-x! p 2)

The contract on a struct’s field is checked when that field is mutated.
Making variable mutation and value mutation syntactically distinct
helps make the concepts distinct in students” minds.

TEMPORALPROPERTIES Mostcontracts fail to account for an impor-
tant aspect introduced by mutation. Equality of immutable data is best
characterized by structural equality, but equality of mutable data is
best characterized by pointer equality [9]. Consequently, mutable val-
ues have a discernible identity even if their fields change. Fully reason-
ing about mutation necessitates reasoning about how mutable values
change over time. From low-level libraries such as the Unix file API in
C, to high-level libraries such as the networking abstractions in Java,
temporal constraints crop up all the time.

LSL can readily express temporal properties. Consider a fresh func-
tion that is intended to return a different natural number every time it
is called. A simplified version of a trace contract can enforce freshness:

(: ids unique-1list?)

(define ids empty)

(: fresh (- (ALLOf Natural (Record ids))))
(define (fresh) elided —)

The (Record ids) contract mutates the variable ids by appending
the returned value from fresh onto the current value of ids each time
the function is called. In other words, ids contains the frace of return
values from fresh. When a variable is mutated, here ids via Record,
its associated contract is checked again. Thus, unique-1ist? is checked
on a sequence containing every value returned from fresh. This check
ensures that fresh never yields a number that it previously returned.

Students are also introduced to state machines and checking tempo-
ral properties using them. The Record contract supports accumulating
functions, just as ordinary trace contracts do, to improve the efficiency
of checking properties. Shown in Figure 13.4 are a pair of contracts that
ensure the g and h functions are interleaved. There is a global accumu-
lator, called state, that is updated according to the g-call and h-call
accumulating functions. The states are '? (any function can be called
next), 'g (g must be called next), and 'h (h must be called next). If the
accumulating function returns #f, then the contract on state fails.
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(: state (OneOf (Constant '?) (Constant 'g) (Constant 'h)))
(define state '7?)

(define (g-call s )
(cond [(equal? s '?) 'h]
[(equal? s 'g) 'h]
[(equal? s 'h) #f]))

(define (h-call s )
(cond [(equal? s '?) 'g]
[(equal? s 'g) #f]
[(equal? s 'h) 'gl))

(: g (- (ALLOf Integer (Record g-call state)) Integer))
(define (g x) — bodyofg —)

(: h (-> (ALLOf Integer (Record h-call state)) Integer))
(define (h y) — bodyofh —)

Figure 13.4: Trace Contract with State Machine

13.4 HOMEWORK ASSIGNMENTS

Table 13.1 shows the complete list of assignments in the course. As-
signments come from a range of domains: games, security, low-level
programming, and distributed systems.

GENERATING MAZEs Students are asked to write and property-test
transformations that convert between two maze representations and
develop generators that randomly construct solvable mazes.

This assignment has two goals. First, round-trip properties, espe-
cially between non-bijective data representations, are common and use-
ful in real-world applications of PBT [67]. Second, naive random gen-
eration is often ineffective. Generating mazes by randomly generating
lists of cells does not produce solvable mazes. Hence, students must de-
velop smart generators that guarantee structural properties of mazes.

One way to represent a maze is as a list that contains cell types (e.g.,
empty, wall, exit) paired with positions. This sparse representation of
a maze assumes missing cells are walls and the width (height) is in-
ferred from the maximum x (y) coordinates. Working with a human-
friendly data representation, such as the following dense representa-
tion, is desirable:

(X X P)
(E X _)
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WEEK TITLE

=

Propositional Logic as Code

Executable Specifications for Simple Functions
More Executable Specifications for Simple Functions
Cryptography and Timing Attacks

Constant Folding for a Stack-Machine Compiler
Generating Mazes

SAT Solver using Four Representations of Booleans
Aliasing Puzzles and PBT Memos

O 00 O U >~ W N

Introduction to Message-Passing Concurrency

[y
o

Manual Memory Allocator

=
[

Chandy-Lamport Snapshot Algorithm
Using Another PBT Library

=
N

Table 13.1: Homework Assignments

Students write conversion functions to and from the dense represen-
tation and test the round-trip property: converting a maze to and from
a dense representation yields an equivalent maze. In doing so, one re-
alizes that every maze has a unique dense representation but not a
sparse one. Although not explicitly stated in the assignment, a correct
solution must define a non-trivial equality over mazes to faithfully test
the round-trip property.

CRYPTOGRAPHY: TIMING ATTACKS Given a function that checks
passwords, yet is susceptible to a timing side-channel attack, students
write a property that detects this vulnerability. They then modify the
function so that it is no longer vulnerable to this kind of attack.
Intensional properties, which reflect how a computation proceeds
and not just what it computes, are often overlooked in discussions
about software specification. Yet there are many domains where in-
tensional properties are as essential as extensional ones. Security re-
searchers are particularly attuned to such considerations, where side-
channel attacks can leak private information. One approach to formally
modeling intensional properties is to allow programs to request inten-
sional information at run time. Once intensional aspects are reified,
contracts and tests can check them like any other ordinary property.
For this homework, students are given an insecure password=? func-
tion that returns as soon as the two input passwords differ. Thus, the
time it takes password=? to execute is proportional to the length of the
correct prefix of a given password attempt. This leak can be used to
infer what the password should be in far fewer tries than what brute
force guessing requires [21]. First, given a way to measure the num-
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ber of character comparisons a function makes (i.e., a deterministic
proxy for time), students define a property for secure password check-
ing. The original password=? function should fail this property. Sec-
ond, students adapt password=? such that it still works correctly, but
also passes the timing specification. Implementing this modification of
the program requires wasting a precise amount of time on redundant
character comparisons.

MANUAL MEMORY ALLOCATOR For the memory allocation home-
work, students implement three functions (malloc, free, defrag) for
an idealized allocator, and write an imperative fibonacci procedure
using these abstractions.

Figure 13.5: Memory Operations

Figure 13.5 illustrates how each of these functions works. A bump al-
locator splits an array of memory cells into two regions: a used portion
and a free portion. The frontier between these two regions is tracked as
an index into the array. Allocation increments the index, returning the
address of a free cell to the user. Once the frontier index reaches the
end of memory, defragmentation compacts all active cells and resets
the frontier index.

Students write a simple memory allocator following the scheme
from Figure 13.5 and then an imperative-style fibonacci procedure
that uses their allocator. Bugs in the allocator propagate and compute
nonsensical results when executing fibonacci.

The final task is to construct a trace contract that guarantees a mem-
ory cell is returned from malloc only if it (1) has never been allocated
in the past or (2) has been allocated but was subsequently freed. This
contract provides a simulacrum of what sophisticated tools, such as
Valgrind, check about real-world low-level programs [130]. Students
are expected to write a trace contract, which uses an accumulator that
keeps track of the list of currently allocated memory cells, in order to
enforce the property.

Figure 13.6 shows a solution to this exercise. The allocated list
stores the current set of allocated cells. When malloc (free) is called,
the respective accumulating function is invoked with the current set
of cells and the newly allocated (freed) cell. If the operation is invalid,
#f is returned. Otherwise, an updated set of cells is returned and be-
comes the new accumulator. One subtlety that students encounter is
the requirement that reference equality (i.e., eq?) must be used for
mutable values.
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(: malloc (-> (ALLOf (Maybe Cell)
(Record check-malloc allocated))))
(define (malloc) — implementation —)

(: free (-> (ALLOf Cell (Record check-free allocated)) Any))
(define (free c) — implementation —)

(: allocated (List Cell))
(define allocated empty)

(: check-alloc (-> (List Cell) Cell (Maybe (List Cell))))
(define (check-alloc cells c)
(cond [(false? c) cells]
[(memg? c cells) #f]
[else (cons c cells)]))

(: check-free (-> (List Cell) Cell (Maybe (List Cell)))
(define (check-free cells c)
(if (memq? c cells)
(filter (A (d) (not (eq? d c))) cells)
#7))

Figure 13.6: Trace Contract for a Memory Manager

CHANDY-LAMPORTSNAPSHOTALGORITHM Distributed systems
rely on snapshots to capture the current status of all processes in
a system. In this assignment, students are asked to implement the
Chandy-Lamport distributed snapshot algorithm using a purely func-
tional message-passing interface. The assignment serves as an intro-
duction to concurrent programming for many students and hints at
the challenging task of reasoning about and maintaining invariants in
concurrent systems.

Consider a network of banks that continuously transfer money
among themselves. At any point in time, a bank might want to see
a snapshot of how much money is in the network and where it is.
Since no individual has a global view of the network, banks must re-
quest this information from all others in the network. The challenge
is to implement an algorithm that computes a consistent snapshot of
the network: intuitively, all money is accounted for in the snapshot.
This problem is well-known in the field of distributed systems and the
Chandy-Lamport algorithm is the standard solution [25].

Students implement Chandy-Lamport using a message-passing li-
brary similar to the big-bang interface from HtDP [50]. They must
check that their implementation always provides consistent snapshots
(i.e., no money is lost or gained in the snapshot compared to the start-
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ing amount). Doing so is fairly nontrivial—small mistakes in the imple-
mentation can yield subtly incorrect behavior that leads to inconsistent
snapshots. Debugging by “thinking hard” is, for most students, not
productive. Describing invariants of the algorithm, writing property
tests on smaller pieces of code, and unit-testing functions, all become
useful for achieving a correct implementation.

SKILLTRANSEER Pedagogiclanguages have advantages in the class-
room over languages found in industry, but using them risks tying
the skills to the language. Students should come away from the course
with confidence that they can apply software-specification techniques
regardless of the language or tools they end up using in a job. Skill
transfer must be addressed explicitly as students often cannot decou-
ple the medium from the message.

One way to encourage skill transfer is to have assignments that go
beyond the course content. Two assignments have students use their
knowledge and skills outside LSL. The first is to write two memos:
one addressed to technically proficient coworkers that analyzes the
strengths and weaknesses of a particular PBT library; the other is ad-
dressed to a less technically minded manager explaining why the cho-
sen PBT library should be adopted. Any language and library is accept-
able, though most students select popular PBT frameworks in Java or
Python. Writing memos reinforces lessons from the course by having
students explain the benefits of PBT in their own words. The second
assignment has students redo several of their previous homework so-
lutions using their chosen PBT library. This exercise helps connect con-
cepts from class to real-world libraries that often have a higher amount
of incidental complexity than LSL.

13.5 STUDENT EXPERIENCES

To help assess the redesign, I interviewed students who took the new
class as well as students who took the previous version taught with
Lean. The Lean version of the course was well liked, but this sentiment
may have more to do with the instructor and course logistics than with
the material. The Lean course introduced students to mechanized the-
orem proving, proceeding from fixed data up through numbers and
lists. At the end of the course, the final assignment was a proof of the
correctness of insertion sort.

I interviewed ten students, four who took the Lean course, and six
who took the specification-based one. Those who took the new course
finished it around six months before the interview, whereas students
who took the Lean course finished it a year or more before the inter-
view. Interviews followed guidelines from Northeastern’s institutional
review board and participants answered the questions in Figure 13.7.
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1. What was the main thing that you learned from this course?
What do you think the course is supposed to teach?

2. What is the connection between logic and computation?

3. Imagine you are working on a system, written in Java, for pro-
cessing financial transactions at a credit card company. Are there
ideas, skills, or techniques you learned in this class that you think
would help you do a better job implementing this system?

4. Was there anything in the course that seemed completely irrele-
vant, or that you could not imagine applying in any other con-
text?

5. Have ideas or techniques from the course been useful in other
courses?

6. Are there topics or techniques that have been useful on intern-
ships or you think will be useful on a job?

Figure 13.7: Interview Questions

LEAN COURSE INTERVIEWS While these four students represent
only a small window into the experience of the hundreds of students
who have taken this course, the commonality of their responses is
revealing. Although none reported disliking the course, none could
imagine how any skills they learned had any bearing on software en-
gineering. For a course ostensibly introducing students to the field
of formal methods, with the intention of connecting mathematical
reasoning to real software, this is a damning result.

Overall, students considered the purpose of the course was to teach
the mechanism of formal proof: specifically, proofs on small examples.
Student B said the course was about “learning how to correctly con-
struct proofs ... proofs regarding booleans, and then proofs regarding
integers.” Similarly, Student A reported doing proofs of “very basic
things ... like commutativity or associativity of multiplication” and
that insertion sort “was a huge proof for us.”

When pressed about the skills they were learning, or how they might
use them, students reported bleak results. Student C explained that
“even though Lean was fun, I feel like I extracted more educational
value from doing the on-paper proofs in algorithms.” Student A was
not sure if the course “taught any practical applications to prove soft-
ware.” Student D, when describing their perspective on the skills they
learned, said: “I like [the course]; I can see why it fits into computer
science, but I didn’t see why it fits into the software concentration.”

The question about building a hypothetical payment processor pro-
duced universally negative results, with illuminating responses. Some
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students noted that they would reach for skills learned in other classes,
e.g., Student A said they would “look towards the software side of solu-
tions ... like JUnit,” and Student D explained that “we didn’t really go
up to big applications of proving algorithms.” Interestingly, Student B
stated that “if I were a regular software developer making a transaction
processor for credit cards, then I probably wouldn’t be using [anything
from the course], but if | were making the libraries that actually did the
math, then I feel like I would.” This remark gives weight to the hypoth-
esis that students thought the skills they were learning only applied to
properties of mathematical domains.

Our final question related to jobs and internships. Student B an-
swered most concisely to the question of whether any skills from the
class were useful to them in their job: “admittedly, no.” Student D
went into more detail, stating “there may be certain applications [for
Lean] ... if you need to really prove exhaustively certain applications,
but ... industry does not work like that ... people prove programs work
... largely through testing. I'm working at a finance company now,
and there is nothing related to [Lean].” This response demonstrates
that Student D understood, in theory, the generalization of the simple
properties to larger software systems, but did not find anything con-
cretely useful given the vast distance between the programs shown
in class and the programs encountered at work. Student D elaborated
that the techniques used in the class were “limited to academia” or
to “top engineering organizations working on cutting edge research,”
and not relevant to an ordinary finance company.

SPECIFICATION-BASED COURSEINTERVIEWS Aswith the firstset
of interviews, these six students offer a limited view into the experience
of the several hundred that went through the class, and further, the ap-
parent depth of their understanding of the material varied widely. For
some, the main takeaway appeared to be the importance of carefully
thinking about all cases in code and the value of testing. For others, it
was clear that they had learned to recognize the value of extracting logi-
cal properties of systems and accepted that property-based testing was
a useful way to validate those. All, though, seemed both to have under-
stood that the course was about understanding the precise behavior of
code, and all were able to recognize that the skills transferred.

When asked what the course was about, Student 1 responded “for-
malizing how programs work.” Other students shared similar ideas,
with Student 3 saying the “main things that I learned were thinking
about how to check if a function was working correctly.” Student 2
said that they “never really thought about the correctness of programs
before taking [the course].” For Student 6, the main takeaway was “the
importance of testing your code.”

Throughout the interviews, details emerged about what the students
got out of the course. Student 4 shared that the course helped them “be
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very intentional with [their]| programs.” For Student 5, the idealized
memory allocator assignment made a strong impression. Student 5
said that learning about mutation and aliasing “would definitely be
useful for pretty much any job” and that hearing about C now conjures
a “mental image of how malloc and free work.”

Most students were able to connect skills learned in the class to the
hypothetical scenario involving credit card transactions. Student 2
mentioned checking “if money is credited into your account that
amount cannot be negative,” and Student 1 mentioned making sure
“people can’t enter zero for their credit card number.” Student 6
thought about how such a system would likely have a fraud detec-
tion mechanism and could “give the [fraud detection] system a bunch
of inputs to test it and make sure it actually catches the fraudulent ones
... or most of the fraudulent ones.” Other students provided vague an-
swers. For instance, Student 5 said that in such a system, skills from
the class could help with “making sure all the functions that you have
do what you want them to do.”

Although it was not a direct response to a question, a final interest-
ing statement from Student 6 was that: “for every job, not just CS, but
in general, being able to make sure the work you're doing is correct,
and does what you actually wanted to do is pretty important.” That
this student made such an observation, when talking about Logic and
Computation, is precisely the goal.

These responses are in sharp contrast to responses from students
in the Lean course, where the skills they learned, about the construc-
tion of formal proofs, seemed inextricably linked to the small examples
through which they were demonstrated. While learning how to con-
struct proofs may be a useful skill, it is not clear that it increases the
likelihood that students produce reliable software.

13.6 LESSONS

This chapter has described the implementation and experience teach-
ing a course dedicated to software specification. While some specifics
may be particular to Northeastern, there are plenty of broad lessons
for others to consider.

Teach software specification explicitly. Software specification and verifi-
cation are distinct skills. Courses that focus on verification tend to have
specifications that are simple and thus the skill of constructing them is
not even worth mentioning. Software specification in real life is often
challenging and worthy of explicit instruction.

Consider where specification fits into existing curricula. Northeastern has
the luxury of an entire course devoted to this topic. At other institu-
tions, small modules on this topic may have to be integrated into an
existing course. There are plenty of points where this material makes
sense. In a software-engineering course, PBT fits well as a supplemen-
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tary testing technique alongside unit tests. In a course on typed func-
tional programming, contracts can complement types and may be used
to strengthen type signatures in the absence of full dependent types.
Courses on object-oriented programming could benefit from a thor-
ough treatment of data abstraction and its enforcement. Courses on
imperative programming could benefit from a thorough treatment of
mutation and how to enforce temporal constraints. A software security
class might discuss how to formalize the notion of a side channel and
detect it at run time. A systems class might discuss correctness proper-
ties of a memory allocator and how automated tools can check them.
In short, specification is relevant across many domains and deserves
to be emphasized across the curriculum.

Use real-world examples and larger programs. The interviews confirm
that students came away from the Lean version of the course with-
out seeing its relevance to software construction. This attitude seemed
to be primarily due to the kinds of specifications encountered in the
course that barely went beyond simple mathematical properties. With-
out specifications from actual software systems, students see no con-
nection to programming. Assignments that draw from specifications
of real-world systems provide a remedy. Even though the programs
are simplified, and the programming language is not an industrial-
strength one, the specifications can still be thought-provoking.

Provide a gradual path from unit tests to verification. Scaling up specifica-
tions demands techniques that scale too. Contracts and property-based
testing are a powerful combination that is both reasonably lightweight
(hence appropriate for freshmen) and expressive. In a first-year course,
using a theorem prover to verify that the Chandy-Lamport algorithm
results in a consistent snapshot would be infeasible. As a waypoint be-
tween unit tests and full verification, contracts and PBT not only make
the transition smoother but are independently useful techniques.

Avoid distractions by using the right tools. Pedagogic tools remove bar-
riers that get in the way of learning skills. Thus, some infrastructure
is needed to deliver a reasonably smooth student experience. Many
of the assignments in this course would not be possible without dedi-
cated linguistic support.

LSL works due to Northeastern’s existing curriculum that uses Dr-
Racket and the teaching languages from HtDP. Similar infrastructure
may be created for other educational environments. For example, oth-
ers have adapted the HtDP curriculum to statically typed languages,
such as OCaml, by porting features of the teaching languages as or-
dinary libraries [7, 145]. Likewise, the functionality of LSL could be
packaged as a library or framework in any host language—especially
those with metaprogramming facilities. Nearly every language has a
library, or often several, inspired by QuickCheck [28]. High-quality li-
braries implementing software contracts are less common, but plenty
of languages have some level of support. For instance, Clojure [76] has
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a popular contract library called clojure.spec. A lightweight wrapper
around these libraries could easily make them suitable for beginning
students. While using a fit-for-purpose teaching language enables the
highest level of control, many of the benefits can be achieved, with far
less instructor effort, using well-designed libraries.

The hope is that these lessons inspire others to contemplate how soft-
ware specification fits into their undergraduate curricula—including
advanced techniques. Even though trace contracts are a fairly recent re-
search development, they are intuitive enough that first-year students
can employ them without trouble. Older students, and experienced
programmers broadly, should have no problem with even more ad-
vanced effectful contracts.
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REFLECTION

There are many papers in the literature that develop effect-
ful contracts on an ad hoc basis. Additionally, there are re-
lated systems outside the realm of contracts intended to
enforce similar properties. These last two chapters survey
some of that related work, show how effectful contracts in
this dissertation compare, and point toward the future.



COMPARISON TO RELATED WORK

Broadly speaking, related work is in the tradition of contract systems,
runtime verification (RV), and type systems. These bodies of research
have distinct philosophies regarding how they express and check prop-
erties. This chapter provides an overview of the literature and com-
pares it to the effectful contracts presented in the dissertation.

14.1 ALTERNATIVE CONTRACT SYSTEMS
Chapter 4 introduces effect-handler contracts as a unified mechanism.
An evaluation of this claim must show that the model and its imple-

mentations cover, as much as feasible, existing work."

Parameter Trace Attribute Effect Racket

ALLOW CALL v v
EXCEPTIONS v v
FRAMING v v

GHOST STATE v v v

MUST CALL v v
NON-REENTRANT v v
PURE v

RESTRICTED EFFECT v
TERMINATION v v
UNION CONTRACTS v

Table 14.1: Comparison Matrix

Table 14.1 presents an overview of how the mechanisms introduced
in the dissertation cover a selection of problems occurring in the litera-
ture. Roughly speaking, a v" icon indicates that the contract mechanism
supports this property.

ALLOW cALL A function may be called only during the dynamic ex-
tent of another function.

EXCEPTIONS Only specified exceptions may be raised during a func-
tion call. This property is the dynamic analogue to Java’s checked
exceptions.

1 All the papers surveyed here build systems on top of the low-level constructs. These
contributions are orthogonal to, and not subsumed by, effect-handler contracts.
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FRAMING Mutations are restricted to specified memory locations.

GHOST STATE Values are associated with a mutable reference, which
is then used to check conformance with a protocol.

MUST cALL A function must be called during the dynamic extent of
a call to another function.

NON-REENTRANT A function must not call itself recursively.

pURE No computational effects, other than non-termination and error
signals, are permitted.

RESTRICTED EFFECT Effects are restricted at a fine-grained level.

TERMINATION A function call must terminate. Specifically, a size-
change graph keeps track of changes to the size of arguments.

UNION cONTRACTs Given a set of contracts, the protected value sat-
isfies at least one of the given contracts. Checking the union of
flat contracts is easy, but checking the union of higher-order con-
tracts relies on state to keep track of violations and assign blame.

Each of these example properties was distilled from one or more pa-
pers in the literature on effectful contracts. The remainder of this sec-
tion discusses each paper chronologically, comparing it to the effectful
contracts presented in the dissertation.

The Java Modeling Language (JML) [24] is a specification language
for stating and verifying properties of objects in Java. It encompasses
a broad range of features including assertions, class invariant state-
ments, frame conditions, purity constraints, termination constraints,
and ghost state declarations—just to name a few. Property checking
takes place in one of two modes: static deductive verification (DV) or
dynamic runtime-assertion checking (RAC). Some properties, such as
termination, can be checked only using DV. JML differs from higher-
order contract systems in three major ways. First, properties are de-
scribed using a restrictive set of “well-defined” terms, a limitation com-
pared to contracts written with ordinary constructs.? Second, JML sup-
ports only first-order properties. Finally, JML lacks a blame assignment
component. Therefore, developers have only stack-trace information to
help determine the location of a bug.

Tov and Pucella [143] study interoperability between a language
with a substructural type system and one with a plain structural type
system Specifically, the boundary form employs a run-time check to
ensure that a function argument is affine, meaning it can be applied
at most once. This check uses a mutable boolean field associated with

Although Racket contracts employ specialized notations, such as ->, these constructs
are relatively shallow abbreviations over plain Racket code.
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each function value (i.e., ghost state) which indicates whether a func-
tion has been applied. As described in Section 6.1, contract-effect han-
dlers can introduce and manipulate ghost state.

For interoperability, a language with a sound gradual type-and-
effect system relies on a run-time enforcement mechanism to restrict
the effects performed by untyped code. Bafiados Schwerter et al. [11]
show that the contracts for such a language can be formulated in
terms of two operations: has (for checking the privileges granted by
the current context) and restrict (for restricting the privileges of an
expression). In the effect-handler language, these primitives can be
expressed as main-effect contracts.

Shinnar [131] takes some constructs from JML, in particular fram-
ing contracts, and adapts them to Haskell. The implementation uses
delimited checkpointing to keep track of state. A delimited checkpoint
is a snapshot of memory captured using software transactional mem-
ory (STM). Framing contracts can detect and restrict writes to transac-
tional references by comparing memory snapshots. Shinnar proves era-
sure for a limited model of Haskell with delimited checkpoints, similar
to other lines of research |55, 134] that consider erasure for contracts
with only a few restricted effects. As seen in Section 6.1, main-effect
contracts can express framing constraints.

In some sense, higher-order temporal contracts [44] are closely re-
lated to trace contracts. Research on these contracts focuses on two
aspects: an operational theory of temporal event sequences and the
specification of properties. On the theory side, the work introduces a
novel approach to operational semantics that formalizes the meaning
of modules as automata that create trees of observable events, similar
to game-based denotational semantics. The semantics satisfies a non-
interference theorem, meaning that streams of values are kept separate.
On the practical side, the work considers specifying properties of event
sequences as regular expressions without giving programmers access
to a data representation of traces. Trace contracts come with more ex-
pressive power, yet do not necessarily sacrifice efficiency.

Scholliers et al. [129] develop computational contracts that instan-
tiate aspect-oriented programming for the contract world. At first
glance, computational contracts look similar to higher-order tempo-
ral contracts. But computational contracts go far beyond any classi-
cal contract classification scheme [18, 19], providing unprecedented
power and imposing a similarly high cost. A computational contract
system empowers programmers to impose arbitrary restrictions on
components from the outside and in a post-hoc manner. Thus, com-
putational contracts depart from the idea that contracts are assertions
at the boundary between opaque components, instead turning com-
ponents into glass boxes. Effect-handler contracts can achieve this
behavior as long as the excluded function can be modified such that
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it is monitorable; if not, this contract is impossible to realize without
more invasive techniques.

Moore et al. [104] study authorization contracts for enforcing access
control. Specifically, authorization contracts can capture, check, and re-
store access privileges via an authority environment that records priv-
ilege information. The model from Moore et al. [104] is essentially a
variant of parameter contracts topped off with a DSL for authorization
management. Effectful contracts alone do not implement any of the se-
curity aspects of the system. However, authorization contracts could
be built on top of parameter contracts.

Nguyén etal. [112] provide a run-time check for termination by mon-
itoring the size-change property (SCP) of functions dynamically. Any
diverging function must exhibit an SCP violation, causing a contract vi-
olation. They turn this run-time check into a static one, using existing
contract verification techniques [111]. To guarantee termination, they
use continuation marks to store size-change information on the stack.
Contract-handler contracts can be used to store the same information,
as shown in Section 7.1.

While the literature on higher-order contracts tends to mention in-
tersection and union contracts, implementing these in general is a se-
rious challenge. Indeed, Racket rejects or/c contracts if the disjuncts
are not “first-order distinguishable.” Several researchers [62, 83, 147]
have studied this problem, and all come to the conclusion that effects
are needed. For example, Williams et al. [147] use a mutable blame
state to keep track of contract violations. A contract-effect handler can
be used to implement this blame state.

14.2 RUNTIME VERIFICATION

Traditional contract systems and RV systems differ along several di-
mensions. Most importantly, as Meyer [101] observes, contracts are a
design tool for the developer; in contrast, RV is a tool for the quality
assurance stage of the development process.

score Contracts are modular. A programmer attaches contracts to
the interface of a “server” component. When a “client” component im-
ports a server component, it is forced to agree to the contract. Simi-
larly, a client component may impose a contract on imported pieces of
functionality to protect itself from a misbehaving service component.
In the first case, clients do not need to be adapted to the service con-
tract, and in the second case, service components remain unaware of
the client’s protective contract. Put differently, it is possible to com-
pile these components in either order, or to link pre-compiled binary
objects. This ability, however, is dependent on run-time support for
proxy values [134, 146] or a similar mechanism.
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RV is whole program. A programmer specifies events of interest and
properties about event traces. The RV system converts this specifica-
tion into an executable monitor and weaves interception code into the
host program to communicate first-order data about events to a sepa-
rate monitor process [15]. Monitoring higher-order values is possible
with RV, but the encoding uses a complex protocol between the server
and the client module; it requires source modification to both compo-
nents. Implementing the protocol on a modular basis is either impos-
sible, which precludes the binary-linking approach available with con-
tracts, or requires extensions to work [149].

LaANGUAGE Contracts are linguistic elements inside the language.
The programmer uses the same language and the same tools for
writing code and contracts. Extending the notation for contracts in
a domain-specific manner is useful; the -> abbreviation for function
contracts is the first and simplest example. Racket also treats contracts
as first-class, so they can be passed and returned from functions.

RV is extra-linguistic; that is, RV systems exist outside the language.
Specifications are usually written in a distinct, external logic lan-
guage and tend to make temporal statements about sequences of
first-order data [74]. While this language may contain fragments of
host-language code, it is only loosely connected to the host language.

VIOLATIONS As a consequence of the differences along the linguis-
tic axis, contracts and RV differ in two ways concerning the violation
of specifications: recovery and error-location information.

When a contract system discovers a violation of an assertion, it raises
an exception that includes information about the parties that agreed
to the contract and which of them violated it (i.e., blame information).
By raising an exception at the very point where a contract violation is
discovered, the contract system gives the program a chance to recover
with a response targeted to the problem. In a language with resumable
exceptions, such as Common Lisp [132], a program may even resume
its execution at the place where the violation occurred.

The precise error information in violation messages enables the de-
veloper to understand the cause of a violation. Lazarek et al. [91] show
that this blame information is effective at narrowing the search space
during the debugging process. It is also a well-founded concept; Di-
moulas et al. [43] provide a framework for proving that blame infor-
mation points to the component supplying a value that does not meet
its specification.

Traditionally, RV systems report violations of specifications with de-
lay and without blame information [138]. The delay is due to the un-
derlying process-communication arrangement between the program
and its monitor, posing a challenge to tracking the provenance of val-
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ues and for assigning blame. Hence, RV makes it difficult to restart
programs unless an additional “diagnosis layer” is supplied [95].

PROPERTIES Contract systems are property agnostic. Any predicate,
including one that tries to decide a recursively enumerable property,
can be used as a contract. As such, contracts are maximally expressive
and potentially computationally expensive.

RV research is property sensitive. Much of the RV literature focuses
on the development of specification languages that can express prop-
erties of interest concisely and that can be compiled into efficient mon-
itoring code [95]. Often these languages are variants of temporal logic.
Specialized logics can provide hard guarantees about time and space
efficiency at the cost of expressive power.

Within the landscape of RV tools, JavaMOP is the best point for com-
parison. Three key differences stand out. First, trace contracts are in-
tended to be realizable in any programming language. As detailed in
Section 10.2, implementing domain-specific contract notations is eas-
iest in languages with macro systems such as Racket, Clojure, Julia,
Rust, or Scala. In languages without macro systems, an implementa-
tion may require a bit more labor, depending on existing features. Sec-
ond, a contract-based library is more convenient for programmers to
use than a toolchain-based solution such as JavaMOP. A library can
be installed directly from a language’s package manager and used im-
mediately. Finally, contracts provide additional benefits beyond what
JavaMOP delivers, e.g., IDE integration and blame assignment.

LOGICPLUGINs JavaMOP users can develop their own logic plugins
to add new, possibly domain-specific, specification languages. These
plugins are essentially ordinary compilers from the surface syntax to
Java code. Constructing such a compiler requires the use of traditional
compiler-generator tools, such as a parser generator, and a solid un-
derstanding of the semantics and behavior of the target language. As
a result, developing a new logic or extending an existing one is chal-
lenging and not a lightweight exercise.

Domain-specific notations rely on the host language’s metaprogram-
ming facilities or established language-implementation patterns. In a
language with a macro system, such as Racket, new notations with
sophisticated features can be created easily with a combination of
declarative grammar specifications and recursive functions. And, if
the host allows for declarative DSL specifications, these languages
become fairly easy to maintain.

LINGUISTIC INTEGRATION One consequence of JavaMOP’s extra-
linguistic approach is that logical specifications are syntactically iso-
lated from the rest of the program. JavaMOP specifications are typi-
cally added as comments to the code or as entirely separate text files.
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As a consequence, these artifacts end up as second-class citizens within
a software project.

By contrast, contracts make logical specifications an integrated part
of the underlying project; they exist within the program. As such, all
host-language tools continue to work with logical specifications. No-
tably, DrRacket’s existing IDE services seamlessly extend to DSL code.

TRACEMANAGEMENT JavaMOP takes a global perspective on mon-
itoring. System events are captured and stored in a global sequence.
This monitoring strategy is central to the run-time verification ap-
proach. Since checking globally generated traces requires a slicing
technique, JavaMOP’s implementation makes slicing independent
of the underlying logic to reduce the burden on the developer of a
new logic notation [27, 81]. In the end, however, the program-global
property approach remains an obstacle to reasoning about code in a
compositional manner. Slicing also requires a notion of equality on
objects which, if one is not defined already, relies on pointer equality.
Depending on pointer equality for objects violates a key principle of
object-oriented programming [31].

Contracts, by contrast, often eliminate the need for slicing because
the state for a given value is freshly initialized when the value passes
through an attachment boundary. Monitoring is local. For instance, the
Maplterator property from Section 10.1 can be attached to a specific ob-
ject and remains quantifier free; the equivalent formula in JavaMOP
requires quantifiers and therefore slicing. Localized monitoring also
unlocks unique advantages such as blame assignment (if the underly-
ing contract system provides it). Slicing is still occasionally useful in
contracts. For example, Section 10.1 shows slicing based on port num-
bers. A notion of equality is defined for port numbers, so the principles
of object-oriented design are maintained.

RUN-TIME ENFORCEMENT  As originally published, JavaMOP sup-
ported only one run-time enforcement mechanism. The Aspect] [84]
weaver would statically inject monitoring code into a system based
on the given specification. This architecture requires Aspect] as a
compile-time dependency and alters the ordinary build process for a
Java project. Now, JavaMOP supports a dynamic enforcement mecha-
nism known as the JavaMOP agent. With this mode, an instrumented
JVM supplies the means to record system events during execution. The
JavaMOP agent offers some advantages over the static approach but re-
quires a specialized runtime. Both of these mechanisms are somewhat
specific to Java and are not readily available in other languages.
Contracts use a completely different implementation approach.
While first-order contracts essentially get away with boolean-valued
assertions, higher-order contract systems rely on proxy objects to moni-
tor a running program. If the language does not support proxy objects
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directly, implementing a reasonable approximation is possible. The
key is that proxies provide a local-enforcement mechanism, enabling
blame assignment in higher-order settings.

A comparison of trace contracts and RV must address several as-
pects: (1) whether they can accommodate existing logic notations;
(2) what developer-facing features these implementations provide;
and (3) how notations support reporting precise specification viola-
tions. The literature proposes a wide variety of logic notations for
specifications that are suitable to check with trace contracts. Here are
Six common ones:

PAST-TIME LINEAR TEMPORAL LOGIC (PLTL) is a past-time vari-
ant of the more commonly used future-time linear temporal
logic. See Section 10.1 for a complete description of PLTL and an
example.

REGULAR EXPRESSIONS (RE) are a simple formalism equivalent in
expressive power to finite-state machines [87]; they are a well-
known way for specifying parts of the behavior of a software sys-
tem [128].

FINITE STATE MACHINES (NFA, DFA) have a finite number of states
and transitions between them. A deterministic finite-state au-
tomaton (DFA) denotes the sequences of events that, when run
on the state machine, follow a unique path that ends in an ac-
cepting state [126]. A non-deterministic finite-state automaton
(NFA) denotes the sequences of events that, when run on the
state machine, end in an accepting state along some path.

QUANTIFIED EVENT AUTOMATA (QEA) resemble DFAs but are
augmented with extra features [14]. As the name suggests, the
machine supports quantification. Conceptually, a QEA repre-
sents a family of automata—one for every possible instantiation
of quantified variables. Practical implementations of QEA more
efficiently compute transitions via a compact representation of
this family of automata.

STREAM LOGIC (sL) describes properties by defining stream equa-
tions [34]. A stream is a sequence of events that is accessible with
a finite lookback. The dynamic checks for SL specifications com-
pute the value for each stream at the current index, making use
of the static dependencies of equations to solve them in the cor-
rect order. Irrelevant values, i.e., ones that are beyond the finite
lookback, are automatically discarded.

The implementations of these six notations have distinct qualities
from the perspective of language creators and users. Four dimensions
stand out as particularly relevant: binding positions, definitions, static
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semantics, and macro extensibility. Figure 14.1 summarizes how each
notation compares along these dimensions.

PLTL RE DFA NFA QEA SL

Binding Rules v v v
Definitions v v
Static Semantics v v

Macro Extensible N v

Figure 14.1: Qualitative Assessment of Logic DSLs

BINDING POSITIONS Some DSLs are variable-free, while others
come with variable declarations that introduce binding positions and
determine the scope of a declaration. Since the syntax-spec system
comes with a binding-rules mechanism, it allows notation creators to
specify which pieces of a formula are variable references, which are
binding positions, and the scope of bindings. By declaring the binding
structure, implementations can automatically support IDE services,
static-semantics passes, and translations into predicates.

Logic notations without quantification (i.e., RE, DFA, and NFA) do
not require binding rules. Specifically, the state-machine notations do
not use an up-front declaration of states; if they did, binding rules
would be required. By contrast, both PLTL and QEA come with vari-
able quantification, and quantified variables are binders. In SL, equa-
tions must reference other equations or primitive event streams. The
binding rules for SL guarantee that there are no free variables refer-
encing an undefined stream.

SEPARATE DEFINITIONS For some logic notations, formulas can be
defined piecemeal via the binding-space mechanism. Developers can
build up libraries of reusable formulas that others can then compose
into specifications of modules, classes, and other components. For such
compositional notations, definition forms are a highly useful mech-
anism. While the state-machine notations from the literature do not
seem compositional, both RE and PLTL greatly benefit from the intro-
duction of definition forms.

STATIC SEMANTICS Some specification notations impose criteria
that determine whether well-formed formulas are valid. If an imple-
mentation can enforce such static-semantics constraints, it is superior
to plain frameworks or functional libraries because it informs devel-
opers at compile time about basic mistakes, instead of delaying the
discovery of specification mistakes until run time. Programmers can
thus avoid unexpected run-time errors and dynamic debugging due
to invalid specifications.
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While Racket’s syntax-spec library automatically guarantees that
logical specifications are well-formed and closed with respect to any
binding rules, the static semantics of DSLs must be written as an addi-
tional check. Of the investigated notations, PLTL and SL must satisfy
such criteria. Section 10.2 covers the monitorability criteria for PLTL.
For SL, the DSL implementation statically checks that the dependency
graph of the stream equations has no closed walk with a total weight of
zero, where the weights are determined by indices into streams. This
check statically generates the dependency graph from the stream equa-
tions via local macro expansion, even when references to streams are
embedded inside Racket sub-expressions.

MACRO EXTENSIBILITY When logical formulas are compositional,
programmers benefit from a macro-extensible language. The RE and
PLTL notations make heavy use of this feature because many useful
operators can be derived from a small set of primitive operators. By
expanding the surface syntax to a small core language, the implemen-
tation can be organized like an ordinary compiler (as in functional lan-
guages such as Haskell, ML, or Scheme). Equally important, macro
extensibility enables users to create syntactic abstractions when func-
tional abstractions do not suffice to hide repeated patterns in formulas.

There is a practical limit to how small the core set of operators should
be. In RE, for example, complement and intersection do not add expres-
sive power to the logic in the sense of being able to describe more lan-
guages. However, these operators are not straightforward macro trans-
lations, and are therefore treated as primitive. Operators with straight-
forward translations, such as the positive repetition operator R, are
implemented as macros.

One claimed benefit of contracts is that error messages come with
blame information identifying the source of the specification violation.
Blame assignment in higher-order settings, and even more so for tem-
poral properties, is subtle. In general, blame assignment points to the
components that contribute to a violation of a specification.

To understand whether blame assignment from the underlying con-
tract system works well when used with domain-specific notations, it
isnecessary to adapt examples from the literature and to test violations
on sample code snippets. The Racket implementation should produce
blame assignments that point to bugs.

Figure 14.2 list some sample properties from the RV literature, which
logics they were implemented in, and how many lines it took to write
each formula. All explain properties of the Java API, which are stated
informally, but may or may not be checked via the assertion system. For
each property, the trace-contract implementation caught all violations
in sample programs with the expected blame assignment.
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Property Logic (SLOC) Description
Maplterator PLTL (7) An iterator constructed from a col-
RE (1) lection, which is itself constructed

from a map, is invalidated once the
underlying map is mutated.

HasNext QEA (6) A call to the has-next method
RE (1) must precede every call to the next

method.
HashCode QEA (5) An object’s hash-code must not
SL (7) change so long as it is being used

as a key in a map.

ClosedReader ~ SL (8) A call to the read method of a
reader must not happen after the
underlying stream has been closed.

SetFromMap  SL (6) Creating a set from a map renders
the latter unusable.

RemoveOnce  RE (1) An iterator’s remove method can be
called only once per invocation of
the next method.

StreamClose RE (1) A stream may be used until it is
closed or the underlying TCP lis-
tener is closed.

PortExclusivity QEA (5) Listeners can be created for a port,
so long as there is no active listener
already associated with that port.

Figure 14.2: Sample Properties

14.3 TYPE SYSTEMS

Researchers often try to move from dynamically checked contracts to
statically checked types, because discovering general mistakes during
compile time seems advantageous compared to discovering specific
mistakes at run time, perhaps even after a program has been deployed.

The work of Strom and Yemini [135] on typestate systems, recently
resumed in various forms [80, 125, 148], directly addresses simple
but common affinity restrictions in APIs. For example, typestate sys-
tems can check constraints such as “method m may be called at most
once” and even “method m must be called before method n.” These
constraints are restricted to regular properties, i.e., those that can be
expressed using a finite-state machine.
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Session types [79] are a closely related idea. Recently this field has
experienced rapid growth. Roughly speaking, session types for objects
come with the same expressive power as typestate [65].

Effect systems are also capable, in a limited way, of constraining the
order in which effects can be performed. Ordinary effect systems do
not consider the order of effects, but sequential effect systems [90, 139]
can. Further extensions can verify some temporal logic formulas [70].

No existing static technique can express all the trace-contract ex-
amples. By combining traces with plain code, a programmer can for-
mulate arbitrary predicates and check value-dependent constraints
on traces. Trace predicates can look for specific values or use specific
values to express a constraint, which is impossible with these type
systems. Dependent session types [141] may be able to do better, but
are still limited to statically decidable properties. Trace contracts, by
monitoring programs at run time, are able to take advantage of the pre-
cision that run-time checking offers. A combination of session types
and contracts [20] can refine the content of messages passed between
parties, but the structure of the protocol remains fixed. This approach
also does not naturally extend to contracts on higher-order values.
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The evidence in support of my thesis, that effectful contracts can be
used as a principled foundation to build expressive high-level speci-
fication languages, is not without caveats. These limitations deserve
consideration. Naturally, they also suggest future work.

15.1 LIMITATIONS

SINGLE-LANGUAGEIMPLEMENTATIONS A significant threat to va-
lidity is that the implementations were all carried out in Racket, a lan-
guage with unique features. Combining an advanced contract system
with sophisticated metaprogramming capabilities—Racket made the
implementations described in this dissertation relatively easy to cre-
ate. The core implementation code for all the libraries combined does
not exceed a few thousand lines. While Racket’s facilities were a boon
for the research, it does call into question how applicable this work
is to conventional languages. Section 8.4 addresses this question with
words but not actions. A thorough validation would require an inde-
pendent engineering effort to realize effectful contracts in a more con-
ventional language.

BENCHMARK LIMITATIONS Dovetailing with the linguistic limita-
tion, the performance measurements from Chapter 12 are with respect
to the Racket implementation only. Aside from the usual concerns
about benchmark selection, the number of benchmarks available is
small. In contrast, the RV community has successfully tested hun-
dreds of properties in Java’s standard library and frequently report
overheads far lower than effectful contracts [93]. Whether this dis-
crepancy is due to the underlying runtime (Racket vs. Java) or the
architecture (proxies vs. weaving) or optimization effort (little vs. sig-
nificant) is unclear. Optimistically, I anticipate that effectful contracts
are not inherently slower than RV techniques, but I have no data to
support that hunch.

LIMITED USER EXPERIENCES So far, there are only a handful of
people who have tried the effectful-contract libraries presented in this
dissertation. Certainly the experiences from Chapter 13 show promis-
ing results, but the students did not have enough time or background
knowledge to write truly challenging trace contracts. A proper evalua-
tion of the design will require experienced software developers using
the libraries to get real work done.
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15.2 FUTURE WORK

Effectful contracts have been studied, on an ad hoc basis, for many
years. The work in this dissertation puts effectful contracts on firmer
theoretical ground. There is, however, opportunity for follow-up work.

EFFECTFUL CONTRACTS FOR RACKET PROPER As mentioned in
Chapter 7, parameter contracts are available in Racket’s contract li-
brary. Trace contracts and attribute contracts, along with the many
auxiliary constructs needed to make them useful, are available only as
experimental third-party libraries. There are some obstacles to merg-
ing these contributions into Racket proper (e.g., eliminating some de-
pendencies) but no fundamental blockers. Getting these libraries into
Racket’s built-in contract system will make them far more appealing
to potential users.

BLAMESTRATEGIEsS Section 8.2 proposes several strategies for trace-
contract blame: no suspects, sets of suspects, and lists of suspects. By
default, the trace-contract library does not report suspects and simply
gives the name of the party that supplied the final value violating the
trace predicate. More detailed information, however, may lead to im-
provements in bug finding. An investigation into the pragmatics [39]
of trace-contract blame is necessary to determine whether the addi-
tional cost of maintaining extra suspect information can be exploited
to improve the debugging process.

LIFTING METATHEORETIC PROPERTIES Proving metatheoretic
properties of the effect-handler contract system (e.g., erasure, blame
correctness) opens the door to possibly lifting these properties to
surface-level constructs that compile to effect-handler contracts. Sec-
tions 7.3, 8.5 and 9.3 give macro translations into Effect Racket. Given
such a translation and a compiler-correctness theorem, it may be pos-
sible to lift the metatheoretic property to the source language via
compilation—saving proof effort. If an effectful contract could be
expressed using effect-handler contracts, then all liftable properties
would immediately be true at the source. Whether such a lifting strat-
egy is possible is an open question.

MORE DOMAIN-SPECIFIC NOTATIONS Theidea of combining con-
tracts with domain-specific specification languages goes far beyond
the particular instantiation with trace contracts. For example, param-
eter contracts with an authorization logic [6] yields authorization con-
tracts [104] that can enforce security properties. Attribute contracts
combined with an appropriate specification language yields the run-
time equivalent of typestate. Indeed, there are plenty of other combi-
nations not yet studied and worthy of exploration.
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CONCURRENTCONTRACTs Chapter 11 presents a case study of how
trace contracts combine with existing Racket contracts to monitor prop-
erties of a concurrent system. As a case study, the example illustrates
the compositionality of trace contracts. However, a single example can-
not establish that trace contracts are a broadly useful mechanism to
write such contracts. The example is limited to one concurrency primi-
tive (channels) and a single specification language. A rigorous demon-
stration of the value trace contracts bring to concurrent systems would
potentially involve other models of concurrency, including the datas-
pace model [63], and more powerful specification languages. The in-
frastructure set up in Chapter 10 provides the necessary foundation
for such an effort.

sTATIC VERIFICATION  While run-time checking of contracts is the
standard mode of enforcement, contracts can be statically checked
too [13, 113, 150]. Static checking is advantageous since it offers a way
to catch errors earlier in the development lifecycle. Because they are
more expressive than other forms of specification, contract verifica-
tion requires advanced static analyses. Similar techniques could be
applied to verify effectful contracts too, including contracts that use
domain-specific notations such as temporal logic. A tool of this sort
could combine the usability benefits of contracts with the power of
verification via model checking.
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PROOF OF ERASURE

for EFFECT EC ~ E®| for ErFECT

. e ~ . re

with”epe~¢ with® ey, EC ~ EC

kL - —

mon;” ec e ~ & mon;"l ec E¢ ~ EC

KL - —

mark;” (vMf)e~e mark}"l(vjvtf) EC ~ EC
Ax.fx~f

Ax.let x; =x in ~f
let xx =x 1in

ka

Figure A.1: Expression and Evaluation Context Simulation Relation

Theorem (Erasure). If eval(e) = b then eval(E[e]) = b.

Proof. The proof proceeds by a simulation argument. See Figure A.1
for the simulation relation on expressions and evaluation contexts. By
convention, a metavariable with a tilde is in simulation with its plain
counterpart. Let € = £[e]. By Lemma A.1, e ~ €. It suffices to show that
€ —* b. By induction on e —* b.

Casee =D.

Booleans are preserved by the simulation so € = b.

Case e —1 b.

By Lemma A.2, there exists e’ such that e —* ¢/ ——* b and
¢ —* ¢/. The inductive hypothesis yields that e’ ——* b. Thus,
¢ —* e/ —* b and therefore & —* b. O

Lemma A.1 (Erasure Inclusion). For all e € Expr, e ~ E[e].
Proof. By induction on e. O

Lemma A.2 (Simulation). If e —* v then for all € such that e ~ €,
there exists €, ¢’ such that e —* ¢/ —* vand & —* ¢'.

Proof. Since e reduces to a value, not an error, that means e = E[e,] —
Ele.] for some evaluation context E and expressions e;, e..

Suppose E ¢ Ctx"* or equivalently E = E¢. Assume too that E%[e,] ~
¢;. By Lemma A.3, E¢le.] ~ ¢; as needed. Otherwise, take E = | By
cases on EM[e,] — EM[e,].
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Case EM[if v e ef] — EM[ey], v = ff.

By Lemma A.7, EM[e,] ~ Eﬁ[if Vv e es] for ey ~ e;. Because
~ preserves non-false values, Eﬁ[if Ve ef] — Eﬁ[é{]. By
Lemma A.8, EM[e,] ~ fﬁ[a]. The remaining cases in this proof
use Lemma A.7 and Lemma A.8 similarly.

Case EM[(Ax.ep) v] — EM[ey[v/x]].

If &; = (Ax.€p) V, then the result follows by Lemma A.9. If e, =
(Ax.fx) vand & = f ¥, then the result follows letting e’ = EM[f V]
and ¢ = EM[f V). If

er = (Ax.let x; =x in
let X, = x in

fxi)v
and ?L: f ¥, then the result also follows letting ¢/ = EM[f v] and
e’ = EM[f V] because e ——* ¢’ (in three steps).
Case EM[with™ vy, v] —s EM[v].
Lete = E‘M[wit hM o v]. Then € —— EM[V] as needed.
Case EM[with® vy v] — EM[v].
Lete = Eﬁ[ﬂ. No step is needed.
Case EM[with™ vy, EM[do v]] — EM[vy, va (Ax.with™ vy, EMe.])l.
By Lemma A.4 and Lemma A.5.
Case EM[with® (va, vi) ES[do v]] — EMwith® vy, ES[v.]].
By Lemma A.3.
Case EM[with® f ES[do v]] — EMwith® (f v) ES[do V]].

Let& = EM[&;] for e, = E[dov]. Because EM[with® (fv) ES[dov]] ~
EM[&y], that implies EX[with® (f v) E{[do v]] ~ &.

Case EM[mon}“1 ttv] — EMv].

Let & = EM[¥] for v ~ ¥. Since EM[v] ~ EM[J] that implies EM[v] ~ &.

Case EM[mon}(‘1 ffv] — EM[errk].

Contradiction since er r}‘ does not reduce to a value.

Case EM[mon}“1 fv] — EM[mon}“l (fv) v].

Lete = Eﬁ[ﬁ] for v ~ V. Because EM[mon}c’l (f v) v] ~ EM[V] that

implies EM[mon}" (f v) v] ~ &.
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Case EM[mon}“1 (va = ve) f] — EM[Ax. —].

This step produces an expression that is in simulation with e:
EMAx. — ] = EM[Ax.let Xj = mon}’j vq X in
let xx = mon}’kvd X in
mon}“l (Ve %5) (f xx)]
~ BM[Ax.let X; =x 1in
letxg =x1in

'F Xk}

Case EM[mon}“1 (va M g) f] — EM[Ax.ma rk}"l (va M g) (f x)].
Thus, e = Eﬁ[?] and ¢ = EMAx.ma rk}“l (va M g) (f x)] ~
EM[Ax.F x] ~ EM[F].

Case EM[mark”" ((va M g) M v) ] — EM[v].
Thus, & = EM[3], and ¢/ = EM[v] ~ EM[3].

Case EJ"[[mon]!<’1 (Cg) f]— EMD\x.withe g (fx)].
Thus, & = EX[f], and ¢’ = E¥[Ax.with®g (f x)] ~ E¥[Ax. x] ~
EMF].

Otherwise.
The remaining cases are similar to one of the above. O

Lemma A.3 (Contract Irrelevance). If E®[e] ~ € then E®[e(] ~ €.

Proof. Intuitively, any expression can be replaced inside a contract-
checking context because it is erased by the simulation. There are only
two situations that can occur during reduction:

Case E¢ = EM[mon;"l E ey].
Therefore, E®[es] = EWmon}“l Eles] ep] ~ ’E‘M[E{,] = ¢. For the same

reason, E¢[e] ~ €.

Case E¢ = EM[with®E ey).

Similar to the above. O
Lemma A.4 (Up Empty).If E ~ E then T, E[do v] = (let y, = v in 0).
Proof. By induction on E ~ E. O

Lemma A.5 (Down Empty). If E ~ E then |, E = z,.
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Proof. By induction on E ~ E. O

Lemma A.6 (Unhandled Preservation). If EM unhandled then it holds
that EM unhandled.

Proof. By induction on EM ~ EX, O

Lemma A.7 (Simulation Decomposition). If e ~ € and e = EMe] for
es ¢ Val, then exists EM and €; such that € = EM[¢;] where EM ~ EM
and e ~ e;.

Proof. By induction on e ~ €. O

Lemma A.8 (Simulation Composition). If EM ~ EM and e ~ &, then
EMe] ~ EM[E].

Proof. By induction on EM ~ EM, O
Lemma A.9 (Substitution). If e ~ € and v ~ ¥ then e[v/x] ~ €[V/x].

Proof. By induction on e ~ €. O
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DRAWING LIBRARY PROPERTIES

A call to get-data-from-file must return #f unless the bitmap
is created with save-data-from-file and the image is loaded
successfully.

. The load- file method of bitmap% cannot be called with bitmaps

created by make-platform-bitmap, make-screen-bitmap, or the
normal constructor make-bitmap, in canvass.

The get-text-extent, get-char-height, and get-char-width
methods can be called before a bitmap is installed. All other
methods must be called after a bitmap is installed.

The method set-argb-pixels cannot be called if the given
bitmap is produced by make-screen-bitmap or make-bitmap
in canvas%.

A bitmap can be installed into at most one bitmap DC and only
when it is not used by a control (as a label), a pen%, or a brush.

A brush cannot be modified while installed into a DC.

A brush cannot be modified if it is obtained from a brush-1ist%.

8. A color cannot be modified if it is created by passing a string to

10.

11.

12.

13.

14.

15.

make-object or by retrieving a color from the color database.

The methods start-doc, start-page, end-page, and end-doc
from dc<%> must be called in the correct order.

Some methods of dc-path% extend an open sub-path, some close
an open sub-path, and some add closed sub-paths to an existing
path. These paths must all be kept consistent, e.g., if a method
can only extend an open sub-path, then it cannot be called on an
object where no sub-path is open.

A pen cannot be modified if it is obtained from a pen-lists%.
A pen cannot be modified while installed into a DC.

If as-eps is set in a post-script-dc% object, then only one page
can be created.

The is-empty? method of region% can only be called when asso-
ciated with a DC.

There are no restrictions on the sequence of methods start-doc,
start-page, end-page, and end-doc for record-dc%.
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