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Abstract
Behavioral software contracts express properties concerning the
flow of values across component (modules, classes, etc) interfaces.
These properties are often beyond the reach of theorem provers and
are therefore monitored at run-time. When the monitor discovers a
contract violation, it raises an exception that simultaneously pin-
points the contract violator and explains the nature of the violation.

Currently contract monitoring assumes static module interfaces.
Specifically, the contract compiler partitions a contract into dis-
joint obligations for the static modules that communicate to an in-
terface. At run-time, the information is used for catching and ex-
plaining contract violations. While static modules suffice for many
situations, first-class modules—such as the units provided by PLT
Scheme—support the dynamic and multiple linking that is often re-
quired in open software systems. The problem is, of course, that in
such a world, it becomes impossible to tell from the source program
alone which components have agreed to which contracts.

In this paper, we develop the semantic framework of monitor-
ing contracts for dynamic modules. We establish the internal con-
sistency of the semantics, and we sketch an implementation based
on our experience of equipping PLT Scheme with such contracts.

Categories and Subject Descriptors D [2]: 2 Modules and inter-
faces; D [2]: 4 Programming by contract

General Terms Reliability

Keywords contracts, first-class module systems

1. Contracts and First-Class Components
With behavioral1 software contracts programmers express strong
logical assertions about the flow of values from one program com-
ponent (module, class) to another. A contract monitoring system
turns these assertions into dynamic checks that raise exceptions as
soon as there is evidence of a contract violation. The exception
messages should pinpoint the violators and include explanations
of the violations as hints for the debugging process. In sum, con-
tracts turn interfaces into monitored boundaries between compo-
nents and blames those parties that send inappropriate values across
these boundaries.

∗ This research was partially supported by the US Air Force Office of
Scientific Research and the National Science Foundation.
1 For contract terminology, see the work of Beugnard et al. [1999].
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Existing contract systems combine compiler support with dy-
namic checking to implement this informative style of monitoring.
The contract compiler partitions each contract into obligations for
each party to the agreement. It maps these pieces into appropri-
ate dynamic checks and equips the checks with information about
which static component promised to live up to which obligations.

About five years ago, we implemented a powerful contract sys-
tem [Findler and Felleisen 2002] for PLT Scheme’s static module
system [Flatt et al. 2009]. Programmers use the contract system for
a range of purposes. Some attach type-like contracts to interfaces
to make up for the lack of a type system; others formulate complex
conditions for all kinds of values, including higher-order functions.

Beyond static modules, PLT Scheme offers a higher-order com-
ponent system, dubbed the unit system [Flatt and Felleisen 1998,
Owens and Flatt 2006]. In contrast to the hardwired import speci-
fications of static modules, units are connected via external linking
specifications. Furthermore, programs can consist of deeply nested
hierarchies of modules that are extended at run-time. A code in-
spection of libraries and software produced in PLT Scheme shows
that programmers frequently use units for parameterizing libraries
over their context and for creating open software systems (e.g., web
servers). PLT Scheme’s unit system shares these attributes with
other component features, e.g., mixins [Flatt et al. 1998, 2006],
traits [Schärli et al. 2003, Allen et al. 2008, Odersky 2009], and
functors in ML [Milner et al. 1990].

The addition of external linking is a critical step toward a true
component market. A client component C that depends on the ser-
vices of some component S relies only on some interface specifica-
tion I, e.g., a module signature or a Java-style interface. It is in no
way connected to the actual implementation of S. If S turns out to be
faulty, it can be replaced with some component S′ that implements
the same interface I without modifying anything else.

When it comes to behavioral contracts, external linking poses
two major problems. First, as explained, blame assignment in exist-
ing contract monitoring system assumes that each contract comes
with exactly one “server module,” that is, one module exports a
value that satisfies the contract to which many other “consumer
modules” subscribe. Second, blame assignment also relies on the
identification of the parties to a contract at compile time. In a com-
ponent system, however, client modules do not directly specify to
which server module they are connected. As a matter of fact, they
may be connected to several distinct server modules in one pro-
gram, and any of them may be loaded at run-time.

Over the past year we have implemented the first contract sys-
tem for PLT Scheme’s units. This paper explains the design with an
operational model so that others can adapt our experience to mix-
ins, traits, or other dynamic component systems. The paper starts
with a brief introduction to units. Section 3 adds contracts to units
on an informal basis. Section 4 develops the generalized contract
system. The rest of the paper sketches an implementation strategy
and provides some additional context.



2. Units
Flatt and Felleisen [1998] introduced units into PLT Scheme as
a dynamic and dynamically-typed analog to SML’s functors. Un-
like the latter, units are first-class values that programs can manip-
ulate at run-time (compound, invoke, splice). Furthermore, while
functors act as transformation functions on atomic modules, link-
ing specifications for units may arrange units in potentially cyclical
graphs. Last but not least, programs may decide at run-time which
units to link in, and indeed, they may even load units from the file
system after the execution has started.

The original model of units [Flatt and Felleisen 1998] consists
of two separate pieces: a reduction semantics and a type system. In
this section, we acquaint the reader with units and their untyped
operational model. This section ignores types because they are
orthogonal to a study of contracts.

p ::= (program d ... e)
d ::= (define x e)
e ::= x | n | b | s | (λ (x) e) | (e e) | (op e e) | (if e e e)

op ::= + | - | * | = | <=
b ::= #t | #f

Figure 1. Syntax for the base model

2.1 The Core Language . . .
Following tradition [Leroy 1994], the original unit model is param-
eterized over the core language, making only some minimal as-
sumptions such as the existence of mutually recursive definitions.

For concreteness, we start from the higher-order functional core
language shown in figure 1. A program in this language is a list
of definitions followed by an expression. The top-level definitions
define distinct variables.

In addition to functions as first-class values, the language in-
cludes three kinds of atomic values:

• numbers (n),
• strings (s),
• and booleans (b) using Scheme notation.

It also supports operations on numbers and conditional expressions.
While PLT Scheme includes assignment statements, destructive

structure operations, and powerful control operations, our model
omits such imperative extensions because their inclusion would
only increase the notational overhead without any additional bene-
fits. As Flatt and Felleisen [1998] explained, units are entirely or-
thogonal to the existence of imperative features in a language.

2.2 . . . plus Units
To add units to our model language, we extend the syntax with the
additional terms in figure 2. The unit form creates an atomic com-
ponent, which is a first-class value. A compound-unit operation
synthesizes a unit hierarchy from two existing units, usually resolv-
ing some imports in the process. Finally, the invoke-unit operation
evaluates the body of a unit that requires no more imports.

In general, a unit consists of three pieces: an import specifica-
tion, an export specification, and a body. The first two are just se-
quences of names. The body of a unit is, like the body of a program,
a series of distinctly-named definitions followed by an expression.
Imported variables are in scope in the body of the unit; they are
resolved to values during unit linking. Each exported variable must
be defined in the body of the unit. Imported variables cannot be
directly exported, because this might lead to definitional cycles.

e ::= .... | (begin e e) | (invoke-unit e) | u | cu
u ::= (unit (import x ...) (export x ...) d ... e)

cu ::= (compound-unit (import x ...) (export x ...) e e)

Figure 2. Syntactic extensions for units

Here is a program fragment, extracted from a full-fledged PLT
Scheme program,2 that uses all unit forms and operations:

(program

(define world@
(unit (import tock clack) (export key=? big-bang)

(define key=? (λ (ke1) (λ (ke2) . . . )))
(define big-bang (λ (w) . . . tock . . . clack . . . ))
"the default expression"))

(define client@
(unit (import key=? big-bang) (export tock clack)

(define tock (λ (w) . . . ))
(define clack (λ (ke) (λ (w) . . . (key=? ke . . . ) . . . )))
(big-bang . . . )))

(define cmain@
(compound-unit (import) (export) world@ client@))

(invoke-unit cmain@))

The unit named world@3 defines and exports two functions: key=?
(an equality predicate on keyboard events) and big-bang (which
launches an interactive graphical program when applied to some
value). In return, the world@ unit imports from its clients two
functions: tock (called in response to clock ticks) and clack (called
in response to keyboard events).

The second definition introduces and names a unit that plays the
role of a potential client to the world@ unit. Dually to world@,
this client@ unit imports key=? and big-bang and exports tock
and clack. Also note that this unit’s last piece is an expression that
invokes the imported big-bang function.

Next, the third definition illustrates the compounding of two
units into a single module. The compound-unit expressions allows
the exports of world@ to flow into client@ and vice versa. Because
the two satisfy each other’s export and import needs, the resulting
compound unit does not import anything else. It could export val-
ues, if so desired, but this is independent of the rest of the program.

Finally, the last expression invokes the import-less cmain@
unit. This action runs all the expressions of the given unit, which in
this case are all the expressions of the two units that went into the
construction of cmain@.

In PLT Scheme, compound units may link as many units as
needed. Pragmatically this multi-unit linking mechanism is highly
useful. From the perspective of a model, it adds nothing but nota-
tional complications. Also, PLT Scheme’s unit system supports an
operation for invoking a unit and splicing its exported definitions
into the local lexical scope. Handling this case, even with the later
addition of contracts, is straightforward and does not add much to
the exposition.

2 This program is a stripped down, unit-based version of PLT Scheme’s
universe.ss teachpack, a library for teaching functional GUI programming
to novices [Felleisen et al. 2009b]. The complete program is beyond the
scope of this paper, but it is typical of the kind of linking that units allow.
3 The use of “@” is a PLT Scheme convention that helps readers identify
the names of units.



P[(invoke-unit (unit (import) (export xe ...) (define xd ed) ... eb))]  [Invoke]
add-defs[[P[eb{(xd ...) := (xn ...)}], ((define xn ed{(xd ...) := (xn ...)}) ...) ]]
 where (xn...) fresh

(compound-unit (import xi ...) (export xe ...)
(unit (import xi1 ...) (export xe1 ...) (define xd1 ed1) ... e1)
(unit (import xi2 ...) (export xe2 ...) (define xd2 ed2) ... e2))

 [Compound]

(unit (import xi ...) (export xe ...) (define xm ed1{(xd1 ...) := (xm ...)}{(xd2 ...) := (xn ...)}) ...
(define xn ed2{(xd2 ...) := (xn ...)}{(xd1 ...) := (xm ...)}) ... ρ[[xe, ([xd1 xm] ... [xd2 xn] ...) ]]   ...
(begin e1{(xd1 ...) := (xm ...)}{(xd2 ...) := (xn ...)} e2{(xd2 ...) := (xn ...)}{(xd1 ...) := (xm ...)}))

 where (xi ... xe1 ... xe2 ...) distinct, {xi1 ...} ⊆  {xi ... xe2 ...}, {xi2 ...} ⊆  {xi ... xe1 ...}, 
{xe ...} ⊆  {xe1 ... xe2 ...}, (xm...), (xn...) fresh

add-defs[[(program d1 ... e), (d2 ...) ]]  = (program d1 ... d2 ... e)
ρ[[x, ([xo1 xn1] ... [x xn] [xo2 xn2] ...) ]]  = (define x xn)

Figure 5. Reduction rules for units

pv ::= n | b | s
nuv ::= pv | (λ (x) e)
nlv ::= pv | u

v ::= pv | u | (λ (x) e)
dv ::= (define x v)
P ::= (program dv ... D d ... e) | (program dv ... E)
D ::= (define x E)
E ::= [] | (E e) | (v E) | (op E e) | (op v E) | (begin E e)

 | (if E e e) | (invoke-unit E) | CU
CU ::= (compound-unit (import x ...) (export x ...) E e)

 | (compound-unit (import x ...) (export x ...) v E)

Figure 3. Values and evaluation contexts for units

((λ (x) e) v) e{x := v}  [Beta]

(op v1 v2) δ[[op, v1, v2 ]]  [Delta]

(if #t e1 e2) e1  [If-True]

(if #f e1 e2) e2  [If-False]

(begin v e) e  [Begin]

P[x] P[v]  [Var]
 where (define x v) ∈  P[x]

Figure 4. The semantics of the core language

2.3 Dynamic Semantics
A reduction semantics [Felleisen et al. 2009a] classifies the syn-
tactic elements of a language as values and computations and then
specifies via relations on the syntax how the latter reduce to the
former. Here the specification of the relations involves so-called
evaluation4 contexts, turning the relations into functions on the syn-
tax. In sum, a reduction semantics specifies a machine whose states
are complete programs and whose instructions are functions from
programs to programs; the machine reduces complete programs to
programs in canonical form, known as values.

4 The hole of an evaluation context identifies the leftmost-outermost posi-
tion in a term. Thus the use of evaluation contexts introduces the standard
reduction function of a calculus as a semantics [Plotkin 1975].

Our semantics consists of two pieces: the usual reduction se-
mantics for the core language and an extension that specifies the
meaning of units and operations on units. Figure 3 classifies a sub-
set of our language’s syntax as values and defines evaluation con-
texts for programs, expressions, and unit expressions.

Next, figure 4 introduces the reduction relations for the core
language. The relations for the core model are straightforward.
Relations that use the −→ notation occur within program contexts
P [ ] but have no need to either examine their context or change it
in any way. In contrast, the [Var] relation shows how free variables
are resolved by finding the corresponding top-level definition in the
program via a condition on the surrounding evaluation context.

The two reduction relations in figure 5 explain how units are
compounded and invoked. The [Invoke] rule describes the process
of invoking a unit value. The invocation process involves renaming
the internal definitions and their references to fresh variables and
lifting the resulting definitions to the program level. Then the body
expression of the unit is evaluated in place of the invoke-unit form.

The [Compound] rule shows how compound-unit takes two
unit values and links them together into a single unit. Like a unit
form, the compound-unit form also has a list of imports and a
list of exports. Each imported variable in a constituent unit must
be listed in either the exports of the other constituent unit or the
imports of the compound-unit form, but not both. This means
that the imports of the compound-unit form and the exports of
each unit value must be distinct. Each exported variable of the
compound-unit form must correspond to an export of either of the
two unit values.

The result of the compound-unit form is a new unit value that
has the same imports and exports as the compound-unit form:

(compound-unit (import x y) (export a)
(unit (import x y) (export a)

(define a (λ (z) (+ x y)))
"default 1")

(unit (import x a) (export b)
(define b (λ (w) (− x (a w))))
"default 2"))

−→
(unit (import x y) (export a)

(define a (λ (z) (+ x y)))
(define b (λ (w) (− x (a w))))
(begin
"default 1"
"default 2"))



This new unit value contains the definitions from both component
units. It also contains the expressions from both units. These two
expressions are sequenced using the begin form, corresponding to
the order of the two units in the compound-unit form.

When the definitions from both units are combined, all the def-
initions and their uses from each unit are renamed. The following
program illustrates why:

(program
(define server1@

(unit (import) (export n) (define n 3) 1))
(define server2@

(unit (import) (export n) (define n 4) 1))
(define client@

(unit (import n) (export) (∗ n 2)))
(define comp1@

(compound-unit (import) (export) server1@ client@))
(define comp2@

(compound-unit (import) (export) server2@ client@))
(compound-unit (import) (export) comp1@ comp2@))

Both server1@ and server2@ provide different implementations
of n, but neither comp1@ nor comp2@, which link these units to
client@, export n. Then comp1@ and comp2@ are linked in the
body of the program. If we did not rename the internal definitions
of n and their uses in each unit at this step, then the resulting unit
would contain two conflicting definitions of n.

In addition to renaming all the definitions, the reduction rule
also renames the uses of each unit’s exports in the other unit and
constructs the export definitions for the combined unit by defining
each export to be the value of the appropriate renamed variable.

2.4 Unit Pragmatics
Units are particularly useful when a program needs the function-
ality of one and the same client module in the context of several
different service modules or when a program must decide at run-
time which module to link in.

Let us illustrate each case with examples from the code of the
DrScheme program development environment [Findler et al. 1997].
DrScheme supports several text books with teaching languages. A
teaching language restricts the syntax of some production language
for the purposes of a particular part of a book. Furthermore teach-
ing languages come in series—typically BSL (for beginning stu-
dent language), ISL (intermediate), and ASL (advanced)—so that
students gradually see more and more of the full language.

Each teaching language is parsed to a common intermediate
representation. The results flow into an interpreter (and other tools)
with annotations so that, for example, run-time error messages use
concepts known to students of the given language and nothing else.
In this context, the common interpreter and each parser come in
the form of a unit: interpreter@, bsl-parser@, isl-parser@, and
asl-parser@. The last three export a parse function; the first one
imports it and exports an eval function.

DrScheme’s test suite ensures that certain programs from, say,
BSL, have the same outcome in all three levels. To achieve this, the
test suite links interpreter@ to all three parser units and runs all
three eval functions on the same program: see figure 6. The sketch
shows how compound-unit links three parsers to one interpreter to
obtain three complete evaluators. Via renaming, all three evaluators
are linked to a testing unit and become available simultaneously.

Naturally DrScheme allows programmers to switch from one
teaching language to another without shutting down and restarting
the IDE. That is, the system decides at run-time which units should
be linked in. The IDE uses the currently selected language to decide
which language front-end to link with the interpreter:

(compound-unit (import) (export)
;; the parsers
[PBSL (bsl-parser@)]
[PISL (isl-parser@)]
[PASL (asl-parser@)]
;; the evaluators
[BSL (interpreter@ PBSL)]
[ISL (interpreter@ PISL)]
[ASL (interpreter@ PASL)]
;; the testing
[TEST ((unit (import (prefix "bsl:" eval)

(prefix "isl:" eval)
(prefix "asl:" eval))

(export)
(define prog1 ’((define i (λ (x) x)) (i 10)))
. . .
. . . (check

10
(bsl:eval prog1)
(isl:eval prog1)
(asl:eval prog1)) . . . )

BSL ISL ASL)])

Figure 6. Linking clients to many servers

(define (get-interpreter current-selection)
(compound-unit (import) (export run)

(cond
[(eq? current-selection ’beginner)
bsl-parser@]

[(eq? current-selection ’intermediate)
isl-parser@]

[(eq? current-selection ’advanced)
asl-parser@])

interpreter@))

Last but not least, DrScheme can also launch arbitrary front-
ends by loading units at runtime:

(define (get-interpreter parser-path)
(compound-unit (import) (export run)

(load parser-path) interpreter@))

For further examples of how units provide useful software ab-
stractions, see Findler and Flatt [1998], Flatt and Felleisen [1998],
and Graunke’s papers on the PLT web server [Graunke et al. 2001].

2.5 Types
Flatt and Felleisen [1998] equipped their unit model with a type
system in order to allow a comparison with a statically typed
module system, such as SML’s. In this paper, we have no need
for a type system, because types are orthogonal to contracts. With
contracts a programmer can express most of the types directly,
and, of course, contracts also permit the specification of logical
assertions that are beyond the constraints of a regular type system.

3. Contracts
While contracts for first-order functions in the context of static
modules are easy to understand, contracts for higher-order func-
tions and contracts for a dynamic module system demand a gradual
introduction. We therefore use this section to introduce contracts
for functions and higher-order functions before we provide a series
of examples of units with contracts. Dually, this section develops
desiderata for our contract system for units, including the ability to
introduce contracts on a gradual basis.



3.1 Contracts for Functions
Contracts on first-order functions come with an intuitive seman-
tics that is easy to explain. Assume we have a module S (service
provider) that exports a function f with a contract and an importing
module C (client). The contract for f is specified in the interface
between C and S and uses this type-like notation:

[f (−→ n? p?)]

It says that the arguments for f must satisfy the (user-defined)
predicate n?, i.e., if a is an argument to f , (n? a) must evaluate
to true; also the results of f are to satisfy the p? predicate.

In this context, consider the following three possibilities:

• S calls f with an argument that doesn’t pass the n? predicate or
f produces results for which p? returns false. Since the call to f
occurs within the boundaries of S, no exception is raised.
• C applies f to an argument for which n? doesn’t hold. In this

case, the contract monitoring system raises an exception point-
ing at C as a client that misapplies f .
• A call to f in C produces a result for which p? returns false.

Now, the contract system blames S for not living up to its
promise to produce p? results via f .

PLT Scheme uses this type-like syntax to specify contracts,
because it easily generalizes to higher-order functions. For example
a function-consuming function F may come with this contract:

[F (−→ (−→ ppp? n?) p?)]

This contract implies that F’s argument satisfies the contract (−→
ppp? n?). Naturally, it is impossible to check that a function always
produces results that satisfy n? and that it is always applied to argu-
ments for which ppp? holds. After all, in a higher-order language,
it is impossible to predict all call sites or the legality of all results.

Findler and Felleisen [2002] resolved this seeming paradox
with two assumptions and one immediate consequence. The first
assumption is that higher-order contracts aren’t violated until a
first-order predicate can produce evidence of the violation. The
second assumption is that only the two parties to the contract can
possibly enforce it, i.e., no other party should take the blame for
violations. The key consequence of these assumptions is that the
positive positions of a function contract are obligations for the
server module S and that the negative positions turn into obligations
for the client C. Given a function contract the positive positions are
those that are to the left of an even number (including 0) of arrows;
the remaining positions are negative. The above examples use n?,
p?, and ppp? to suggest positive and negative positions.

Here is a concrete example:

[encrypt (−→ string? (−→ natural? prime?) string?)]

This higher-order contract specifies a function that consumes two
arguments: a string and a function from the natural numbers to
prime numbers. The result is a string. Naturally if the server applies
the prime-choosing function to "hello world", S is blamed for
misapplying its second argument. If, however, the prime-picking
function produces 9, the contract monitor blames C for supplying
a bad argument.

Before moving on, note that tracking blame information in
a higher-order world requires non-trivial machinery, and a full
explanation is beyond the scope of this example section. For some
details see the next section.

3.2 Units with Contracts
Units are naturally the parties to contracts in our world, though
for notational simplicity we do not introduce explicit interface

definitions. Instead, we attach contracts directly to the import and
export specifications of a unit, e.g.,

(define convert@
(unit (import)

(export [convert (−→ string→number real?)])
(define convert (λ (n) . . . ))
"default"))

This first sample contracts states that convert maps strings convert-
ible to numbers5 to reals. Of course, the unit could also export the
predicate that protects convert, like this:

(define convert@
(unit (import) (export

[convertible? (−→ any/c boolean?)]
[convert (−→ convertible? real?)])

(define convert (λ (n) . . . ))
(define convertible (λ (x) . . . ))
"default"))

To use the services of convert@, we must write a unit that
imports the convert function:

(define cvrt-client@
(unit (import [convert (−→ string→number real?)])

(export)
(convert 4)))

Since both units use the same contract, we can obviously link them:

(compound-unit (import) (export) convert@ cvrt-client@)

Furthermore, it is also obvious that convert@ is responsible for the
positive positions of the contract, and cvrt-client@ is responsible
for the negative positions.

Units don’t have to use the same contract to be compatible,
however. A programmer may just know that two units should be
able to collaborate even if the contracts aren’t quite the same:

(define string-client@
(unit (import [convert (−→ string? real?)]) (export)

(convert "hellow")))

Here string-client@ imports a convert function that is expected to
accept all strings. A programmer who believes that string-client@
does not apply convert to inconvertible strings may still link the
two units:

(compound-unit (import) (export) convert@ string-client@)

Of course, an invocation of the result raises a contract error.
The question is which unit should be blamed. The convert@

unit provides a convert function from number-convertible strings to
numbers, and we may assume that it fulfills its contract. The string-
client@ unit applies convert to "hellow", which is appropriate for
its contract. Clearly, neither convert@ or string-client@ should be
blamed. This leaves us with the compound unit, which becomes a
third party to the contracts, an implicit adapter.

3.3 Adding Contracts Gradually
Programmers use dynamic languages because they wish to get
something running quickly with as little overhead as possible.
Hence language designers must be prepared to deal with programs
that mix modules with and without contracts.

Let us revisit the preceding example with the contracts from
string-client@ removed:

5 In PLT Scheme, string→number translates some given string into a num-
ber, if possible, and produces false otherwise. Since all non-false values
count as true, this function can act as a basic predicate, too.



c ::= (unit/c (import [x c] ...) (export [x c] ...)) | (-> c c) | e
u ::= (unit s (import [x c] ...) (export [x c] ...) d ... e)

cu ::= (compound-unit s (import [x c] ...) (export [x c] ...) e e)

Figure 7. Surface syntax extensions for contracts

(define plain@
(unit (import convert) (export) (convert −4)))

(define c@
(compound-unit (import) (export) convert@ plain@))

If the program also invokes c@, an exception is raised again.
As mentioned, we assume that convert@ lives up to its contract.

The plain@ unit does not subscribe to a contract for convert (or
anything else) and thus can’t be the target of a “blame message.”
Again we are forced to blame the linking compound-unit expres-
sion, because it allowed the convert function, which was exported
with a contract, to flow to a party that misapplies the function.

In short, we are forced to conclude:

• All units guarantee the negative positions of their import con-
tracts and the positive positions of their export contracts.
• Compound units guarantee for their constituent units the posi-

tive positions of the import contracts and the negative positions
of the export contracts.

3.4 A Contract Combinator for Units
Because units are first-class values, our language also needs a
method of ascribing contracts to units in interfaces. After all, values
are first-class when they can be used wherever other values are
used.

Consider the following unit:

(define combine-client@
(unit
(import) (export [combine . . . ])
(define combine

(λ (u@)
(invoke-unit
(compound-unit (import) (export)

u@ client@))))))

It exports a function that consumes a unit, links it with the above
client@ unit, and invokes the result.

To protect the combine export of combine-client@, we need a
contract combinator that guards units. This contract combinator
must be able to describe those details important for interfacing with
a unit, i.e., the imports and exports. In PLT Scheme, unit/c plays
this role. For the given example, the combinator would be used as
follows:

(export
[combine

(−→ (unit/c (import)
(export [convert (−→ string→number real?)]))

positive?)] . . . )

A unit that is being guarded with a unit contract must import a
subset of the imports listed by the unit/c expression and export
a superset of the exports. Furthermore, we must decide whether
the unit which results from applying a unit contract has the same
imports and exports as the original unit, or whether it has the
same imports and exports as those listed in the contract. Here we
take the latter view, as contracts constitute a promise of how a
value is utilized, and thus assuming unlisted imports or exports is
inappropriate.

(program
(define any/c (λ (x) #t))
(define world@

(unit "world"
(import [world? (−→ any/c any/c)]

[tock (−→ world? world?)]
[clack (−→ key? (−→ world? world?))])

(export [key? (−→ any/c any/c)]
[key=? (−→ key? (−→ key? any/c))]
[big-bang (−→ world? any/c)])

(define key? (λ (ke) . . . ))
(define key=? (λ (ke1) (λ (ke2) . . . )))
(define big-bang (λ (w) . . . tock . . . clack . . . )) 1))

(define client@
(unit "client"

(import [key? (−→ any/c any/c)]
[key=? (−→ key? (−→ key? any/c))]
[big-bang (−→ world? any/c)])

(export [world? (−→ any/c any/c)]
[tock (−→ world? world?)]
[clack (−→ key? (−→ world? world?))])

(define world? (λ (w) . . . ))
(define tock (λ (w) . . . ))
(define clack (λ (ke) (λ (w) . . . (key=? ke . . . ) . . . )))
(big-bang 0)))

(invoke-unit
(compound-unit "linker" (import) (export)

world@ client@)))

Figure 8. Extended example with predicate exports

4. Units with Contracts
Equipped with an informal understanding of contracts in a unit
setting, we proceed to formulate a model of this world. First,
we extend the syntax of our model to accommodate contracts.
Second, we formulate a model of contract monitoring. Third, we
state two essential theorems about the model: one concerning “type
soundness” and one for “contract soundness.”

4.1 Syntax for Units with Contracts
Figure 7 spells out our revisions to the syntax of section 2 that
add contracts to our model. The first clause specifies contracts as
unit contracts, functions contracts, or (expressions that evaluate to)
arbitrary predicates. The second line adds contracts to the import
and export specifications of units. The second and third line add
names to both the unit and compound-unit forms to represent
blame; a production system would naturally use source locations
instead. Figure 8 presents our running example from section 2—a
GUI module and its clients—in this revised syntax.

4.2 The Idea
Findler and Felleisen [2002] describe a model of higher-order con-
tracts and static modules. Their model assumes that programs con-
sist of a sequence of modules and a main expression. Contract
checking in this model compiles each reference to an imported
function into a guard expression. Roughly speaking guard expres-
sions wrap imported functions with a contract and information
about the parties to the contract. The wrapper knows how to check
every kind of value, including higher-order functions.

In a unit world, however, the compiler lacks two critical pieces
of information to use this strategy. First, while units specify their
imports, they can’t possibly know the contracts that the export-
ing service module imposes on them. Second, client units don’t



ξ[[u ]]  = (unit su (import [xi cin] ...) (export [xe cen] ...) (define xs “unknown”)
(define xf en) ... ρc[[xe, cer, ([xd xf] ...), su, xs ]]   ...
ξ[[eb ]]  {(xi ... xd ...) := ((guard xi cir xs su) ... xf ...)})

 where u = (unit su (import [xi ci] ...) (export [xe ce] ...) (define xd ed) ... eb), 
xs = fresh-in[[u ]] , 
(xf ...) = fresh-in[[u, (xd ...) ]] , 
(cin ...) = (ξ[[ci ]]   ...), 
(cen ...) = (ξ[[ce ]]   ...), 
(cir ...) = (Σ[[cin, ([xi cin] ...), xs, su ]]  {(xd ...) := (xf ...)} ...), 
(cer ...) = (Σ[[cen, ([xi cin] ...), xs, su ]]  {(xd ...) := (xf ...)} ...), 
(en ...) = (ξ[[ed ]]  {(xi ... xd ...) := ((guard xi cir xs su) ... xf ...)} ...)

ξ[[(compound-unit s (import [xi ci] ...)
(export [xe ce] ...) e1 e2) ]]

 = (compound-unit s (import [xi ξ[[ci ]]  ] ...) (export [xe ξ[[ce ]]  ] ...) ξ[[e1 ]]   ξ[[e2 ]]  )

ξ[[(invoke-unit e) ]]  = (invoke-unit ξ[[e ]]  )
ξ[[(e1 e2) ]]  = (ξ[[e1 ]]   ξ[[e2 ]]  )
ξ[[(λ (x) e) ]]  = (λ (x) ξ[[e ]]  )
ξ[[(op e1 e2) ]]  = (op ξ[[e1 ]]   ξ[[e2 ]]  )
ξ[[(if e1 e2 e3) ]]  = (if ξ[[e1 ]]   ξ[[e2 ]]   ξ[[e3 ]]  )
ξ[[(begin e1 e2) ]]  = (begin ξ[[e1 ]]   ξ[[e2 ]]  )
ξ[[x ]]  = x
ξ[[n ]]  = n
ξ[[b ]]  = b
ξ[[s ]]  = s
ξ[[(-> c1 c2) ]]  = (-> ξ[[c1 ]]   ξ[[c2 ]]  )
ξ[[(unit/c (import [xi ci] ...) (export [xe ce] ...)) ]]  = (unit/c (import [xi ξ[[ci ]]  ] ...) (export [xe ξ[[ce ]]  ] ...))
Σ[[xi, ([xi1 ci1] ... [xi ci] [xi2 ci2] ...), ep, en ]]  = (guard xi Σ[[ci, ([xi1 ci1] ... [xi ci] [xi2 ci2] ...), ep, en ]]   ep en)
Σ[[x, ([xi ci] ...), ep, en ]]  = x
Σ[[(λ (x) e), ([xi1 ci1] ... [x c] [xi1 ci1] ...), ep, en ]]  = (λ (x) e)
Σ[[(λ (x) e), ([xi ci] ...), ep, en ]]  = (λ (x) Σ[[e, ([xi ci] ...), ep, en ]]  )
Σ[[(e1 e2), ([xi ci] ...), ep, en ]]  = (Σ[[e1, ([xi ci] ...), ep, en ]]   Σ[[e2, ([xi ci] ...), ep, en ]]  )
Σ[[(op e1 e2), ([xi ci] ...), ep, en ]]  = (op Σ[[e1, ([xi ci] ...), ep, en ]]   Σ[[e2, ([xi ci] ...), ep, en ]]  )
Σ[[(if e1 e2 e3), ([xi ci] ...), ep, en ]]  = (if Σ[[e1, ([xi ci] ...), ep, en ]]   Σ[[e2, ([xi ci] ...), ep, en ]]   Σ[[e3, ([xi ci] ...), ep, en ]]  )
Σ[[(begin e1 e2), ([xi ci] ...), ep, en ]]  = (begin Σ[[e1, ([xi ci] ...), ep, en ]]   Σ[[e2, ([xi ci] ...), ep, en ]]  )
Σ[[(unit su (import [xui cui] ...) (export [xue cue] ...)

(define xd ed) ... eb), ([xi ci] ...), ep, en ]]
 = (unit su (import [xui cui] ...) (export [xue cue] ...)

(define xd Σ[[ed, ([xfi cfi] ...), ep, en ]]  ) ... Σ[[eb, ([xfi cfi] ...), ep, en ]]  )
 where ([xfi cfi] ...) = filter-out[[(xui ... xue ...), ([xi ci] ...) ]]
Σ[[(compound-unit su (import [xui cui] ...)

(export [xue cue] ...) e1 e2), ([xi ci] ...), ep, en ]]
 = (compound-unit su (import [xui cui] ...) (export [xue cue] ...)

Σ[[e1, ([xfi cfi] ...), ep, en ]]   Σ[[e2, ([xfi cfi] ...), ep, en ]]  )
 where ([xfi cfi] ...) = filter-out[[(xui ... xue ...), ([xi ci] ...) ]]
Σ[[(invoke-unit e), ([xi ci] ...), ep, en ]]  = (invoke-unit Σ[[e, ([xi ci] ...), ep, en ]]  )
Σ[[(guard e c e1 e2), ([xi ci] ...), ep, en ]]  = (guard Σ[[e, ([xi ci] ...), e1, e2 ]]   Σ[[c, ([xi ci] ...) ]]   Σ[[ep, ([xi ci] ...) ]]   Σ[[en, ([xi ci] ...) ]]  )
Σ[[(error se), ([xi ci] ...), ep, en ]]  = (error se)
Σ[[n, ([xi ci] ...), ep, en ]]  = n
Σ[[b, ([xi ci] ...), ep, en ]]  = b
Σ[[s, ([xi ci] ...), ep, en ]]  = s
Σ[[(unit/c (import [xui cui] ...)

(export [xue cue] ...)), ([xi ci] ...), ep, en ]]
 = (unit/c (import [xui Σ[[cui, ([xi ci] ...), ep, en ]]  ] ...)

(export [xue Σ[[cue, ([xi ci] ...), ep, en ]]  ] ...))
Σ[[(-> c1 c2), ([xi ci] ...), ep, en ]]  = (-> Σ[[c1, ([xi ci] ...), ep, en ]]   Σ[[c2, ([xi ci] ...), ep, en ]]  )
ρc[[x, ce, ([xo1 xn1] ... [x xn] [xo2 xn2] ...), ep, en ]]  = (define x (guard xn ce ep en))

Figure 9. Contract compilation



E ::= .... | (guard E c e e) | (guard v c E e) | (guard v c v E)
CU ::= (compound-unit s (import [x c] ...) (export [x c] ...) E e) | (compound-unit s (import [x c] ...) (export [x c] ...) v E)

P[(invoke-unit u)]  add-defs[[P[eb{(xd ...) := (xn ...)}], ((define xn ed{(xd ...) := (xn ...)}) ...) ]]  [Invoke]
 where u = (unit s (import) (export [xe ce] ...) (define xd ed) ... eb), (xn...) fresh

(compound-unit s (import [xi ci] ...) (export [xe ce] ...)
(unit s1 (import [xi1 ci1] ...) (export [xe1 ce1] ...) (define xs1 “unknown”) (define xd1 ed1) ... e1)
(unit s2 (import [xi2 ci2] ...) (export [xe2 ce2] ...) (define xs2 “unknown”) (define xd2 ed2) ... e2))

 [Compound]

(unit s (import [xi ci] ...) (export [xe ce] ...) (define xs “unknown”) (define xs1n s) (define xs2n s) d1 ... d2 ...
ρc[[xe, cen, ([xd1 xm] ... [xd2 xn] ...), s, xs ]]   ... (begin e1n e2n))

 where (cin ...) = (Σ[[ci, ([xi ci] ...), xs, s ]]  {(xe ...) := (xen ...)} ...), 
(cen ...) = (Σ[[ce, ([xi ci] ...), xs, s ]]  {(xe ...) := (xen ...)} ...), 
(ed1n ...) = (ed1{(xs1 xd1 ...) := (xs1n xm ...)}{(xd2 ...) := (xn ...)}{(xi ...) := ((guard xi cin xs s) ...)} ...), 
e1n = e1{(xs1 xd1 ...) := (xs1n xm ...)}{(xd2 ...) := (xn ...)}{(xi ...) := ((guard xi cin xs s) ...)}, 
(ed2n ...) = (ed2{(xs2 xd2 ...) := (xs2n xn ...)}{(xd1 ...) := (xm ...)}{(xi ...) := ((guard xi cin xs s) ...)} ...), 
e2n = e2{(xs2 xd2 ...) := (xs2n xn ...)}{(xd1 ...) := (xm ...)}{(xi ...) := ((guard xi cin xs s) ...)}, 
(d1 ...) = ψ[[((define xm ed1n) ...), (xe ...), (xen ...) ]] , (d2 ...) = ψ[[((define xn ed2n) ...), (xe ...), (xen ...) ]] , 
(xi ... xe1 ... xe2 ...) distinct, {xi1 ...} ⊆  {xi ... xe2 ...}, {xi2 ...} ⊆  {xi ... xe1 ...}, {xe ...} ⊆  {xe1 ... xe2 ...}, 
xs, xs1n, xs2n, (xm...), (xn...), (xen...) fresh

(guard (λ (x) e) (-> c1 c2) sp sn)  (λ (x) (guard ((λ (x) e) (guard x c1 sn sp)) c2 sp sn))  [HO-λ]

(guard nlv (-> c1 c2) sp sn)  (error sp)  [HO-Notλ]

(guard (unit s (import [xui cui] ...) (export [xue cue] ...) (define xd ed) ... eb)
(unit/c (import [xi ci] ...) (export [xe ce] ...)) sp sn)

 [UC-Unit]

(unit s (import [xni cni] ...) (export [xne cne] ...) (define xnew edn) ... ρc[[xe, ce, ([xd xnew] ...), sp, sn ]]   ... en)
 where (edn ...) = (ed{(xd ...) := (xnew ...)}{(xui ...) := ((guard xui cui sp sn) ...)} ...), 

en = eb{(xd ...) := (xnew ...)}{(xui ...) := ((guard xui cui sp sn) ...)}, 
([xni cni] ...) = expand-imports[[([xui cui] ...), (xi ...) ]] , 
([xne cne] ...) = contract-exports[[([xue cue] ...), (xe ...), () ]] , {xui ...} ⊆  {xi ...}, {xe ...} ⊆  {xue ...}, 
(xnew...) fresh

(guard (unit s (import [xui cui] ...) (export [xue cue] ...) d ... eb) (unit/c (import [xi ci] ...) (export [xe ce] ...)) sp sn)  [UC-Mismatch]
(error sp)
 where otherwise

(guard nuv (unit/c (import [xi ci] ...) (export [xe ce] ...)) sp sn)  (error sp)  [UC-NotUnit]

(guard v e sp sn)  (if (e v) v (error sp))  [FO-Guard]

P[(error s)]  (error s)  [Error]

Figure 10. New and revised reduction rules

e ::= .... | (guard e c e e) | (error s)

Figure 12. Internal syntax for guard expressions

know which server unit provides the services. Hence, the compiler
doesn’t know the name for the positive blame positions in a func-
tion contract.

To overcome these knowledge gaps, our compiler for unit con-
tracts uses a different compilation strategy for exports and delays
additional aspects of contract checking to the linking step. Specif-
ically, it adds guards to the exported functions as well as imported
ones. Furthermore, it uses a protocol for introducing and changing
placeholders for the positive blame positions.

Figure 12 shows the extensions to the expression syntax with
guard expressions and contract errors. In our model, these new
syntactic forms are invisible to the programmer; an implementation

can re-use existing syntax (e.g., if expressions and error functions).
The guard form consists of an expression, a contract, and two
strings (blame labels) for the positive and negative blame positions
of contracts, respectively.

4.3 Contract Compilation
Figure 9 specifies the compiler of our unit contract model. The
metafunction ξ is applied to all top-level expressions in the pro-
gram. It is mostly a straightforward homomorphism on expressions
and contracts except for the unit case. For units, ξ renames all
internal definitions and their uses, creates (using ρc) new export
definitions that guard the internal implementation, and replaces all
uses of import variables with guarded versions of the same. Finally,
the function adds a definition for xs to unit bodies; this new def-
inition acts as a placeholder for the blame label of the yet-to-be-
determined compound unit that links this unit into the full program.



ψ[[(d1 ... (define xd ed) d2 ...), (xo1 ...1 xd xo2 ...), (xn1 ...1 xnew xn2 ...) ]]  = ψ[[(d1 ... (define xnew enew) d2 ...), (xo1 ... xd xo2 ...), (xn1 ... xnew xn2 ...) ]]
 where d1 = (define x1 e1), 

enew = ed{(xo1 ... xd xo2 ...) := (xn1 ... xnew xn2 ...)}, 
{x1 ...} ∩ {xo1 ... xd xo2 ...}  = ∅

ψ[[((define x e) ...), (x1 ...), (x2 ...) ]]  = ((define x e) ...)
any1{() := ()}  = any1

any1{(x1 x2 ...) := (any2 any3 ...)}  = any1{x1 := any2}{(x2 ...) := (any3 ...)}
xa{xa := ea}  = ea

x{xa := ea}  = x
(e1 e2){xa := ea}  = (e1{xa := ea} e2{xa := ea})
(if e1 e2 e3){xa := ea}  = (if e1{xa := ea} e2{xa := ea} e3{xa := ea})
(op e1 e2){xa := ea}  = (op e1{xa := ea} e2{xa := ea})
(invoke-unit e){xa := ea}  = (invoke-unit e{xa := ea})
(guard e c es ep){xa := ea}  = (guard e{xa := ea} c{xa := ea} es{xa := ea} ep{xa := ea})
(error s){xa := ea}  = (error s)
(begin e1 e2){xa := ea}  = (begin e1{xa := ea} e2{xa := ea})
(unit s (import [xi1 ci1] ... [xa ca] [xi2 ci2] ...)

(export [xe ce] ...) d ... e){xa := ea}
 = (unit s (import [xi1 ci1] ... [xa ca] [xi2 ci2] ...)

(export xe ...) d ... e)
(unit s (import [xi ci] ...) (export [xe ce] ...)

d1 ... (define xa ed) d2 ... eb){xa := ea}
 = (unit s (import [xi ci] ...) (export [xe ce] ...)

d1 ... (define xa ed) d2 ... eb)
(unit s (import [xi ci] ...) (export [xe ce] ...)

(define xd ed) ... eb){xa := ea}
 = (unit s (import [xi ci{xa := ea}] ...) (export [xe ce{xa := ea}] ...)

(define xd ed{xa := ea}) ... eb{xa := ea})
(compound-unit s (import [xi1 ci1] ... [xa ca] [xi2 ci2] ...)

(export [xe ce] ...) e1 e2){xa := ea}
 = (compound-unit s (import [xi1 ci1] ... [xa ca] [xi2 ci2] ...)

(export [xe ce] ...) e1 e2)
(compound-unit s (import [xi ci] ...)

(export [xe ce] ...) e1 e2){xa := ea}
 = (compound-unit s (import [xi ci{xa := ea}] ...)

(export [xe ce{xa := ea}] ...) e1{xa := ea} e2{xa := ea})
(λ (xa) eb){xa := ea}  = (λ (xa) eb)
(λ (xf) eb){xa := ea}  = (λ (xf) eb{xa := ea})
b{xa := ea}  = b
n{xa := ea}  = n
s{xa := ea}  = s
(unit/c (import [xi ci] ...) (export [xe ce] ...)){xa := ea}  = (unit/c (import [xi ci{xa := ea}] ...) (export [xe ce{xa := ea}] ...))
(-> c1 c2){xa := ea}  = (-> c1{xa := ea} c2{xa := ea})

Figure 11. Substitution and Definition Renaming

The trickiest part of this conversion is handling the use of im-
ported identifiers in contracts. Since uses of variables in contracts
are considered to be internal to the unit, we do not check the con-
tracts for exported variables, but we do need to check those on im-
ports. Contracts on imports may use other imports, however, and to
deal with such uses, our compiler unrolls the contracts for imports
and exports completely.

The metafunction Σ appropriately unrolls these contracts. As
defined, this unrolling may not terminate if two or more imports
use each other in their respective contracts:

(unit "loop" (import [x? (−→ y? any/c)]
[y? (−→ x? any/c)])

(export)
(x? 3))

An implementation of Σ can detect such cyclic dependencies in
import contracts for each unit or compound-unit expression and
refuse to compile the program if such a cycle is detected. We skip
this complication for Σ because it adds little to this paper.

4.4 Dynamic Contract Checking
The rest of the contract checking process is performed at run-time
for both higher-order functions and first-class units. The former

follows Findler and Felleisen [2002]. The latter demands changes
to the reduction rules for units.

Figure 10 specifies the revised reduction relations, along with
the revised definitions of evaluation contexts. These new relations
rely on a number of auxiliary functions, including substitution and
renaming functions (ψ). The latter are defined in figure 11.

Two aspects of this process deserve special attention: unit link-
ing and unit guarding. The rest of this section is dedicated to these
two aspects of run-time checking.

4.4.1 Linking Units
As noted in section 4.2, compounding units introduces new parties
to contracts, especially for contracts that don’t match. To assign
blame to the proper compound unit, our run-time system must syn-
thesize guard expressions during a linking step. A revised [Com-
pound] reduction relation achieves this as follows:

• create a new placeholder blame label for future linking;
• replace the placeholder blame label from each unit with the

blame label of the compound unit;
• rename the definitions from each unit and their uses, which

includes imported uses in the other unit;
• guard all uses of the compound unit’s imports;



• create guarded versions of the compound unit’s exports; and
• sequence the body expressions.

The renaming step ensures that linking does not inadvertently add
contract checks in a place where they are unwanted.

Consider this program:

(program
(define ge/c

(λ (m)
(λ (n)

(<= m n))))
(define server@
(unit "server"

(import)
(export [f (−→ (ge/c 2) (ge/c 4))])

(define f (λ (n) (∗ n n)))
"default"))

(define client@
(unit "client"

(import [f (−→ (ge/c 2) (ge/c 4))])
(export)

(f 2)))
(define link@
(compound-unit "link"

(import)
(export [f (−→ (ge/c 3) (ge/c 9))]) server@ client@))

. . . )

Here, for example, we do not want the use of f in client@ to be
checked with the export contract from link@.

The compiler translates the program as follows:

(program
(define ge/c

(λ (m)
(λ (n)

(<= m n))))
(define server@

(unit "server"
(import)
(export (f (−→ (ge/c 2) (ge/c 4))))
(define x "unknown")

(define f1 (λ (n) (∗ n n)))

(define f (guard f1 (−→ (ge/c 2) (ge/c 4)) "server" x))
"default"))

(define client@
(unit "client"

(import (f (−→ (ge/c 2) (ge/c 4))))
(export)

(define x "unknown")

( (guard f (−→ (ge/c 2) (ge/c 4)) x "client") 2)))
(define link@

(compound-unit "link"
(import)
(export (f (−→ (ge/c 3) (ge/c 9)))) server@ client@))

. . . )

After substituting the two units into the compound-unit expres-
sion, the [Compound] relation applies and linking takes place:

(program
(define ge/c (λ (m) (λ (n) (<= m n))))
(define server@
(unit "server" (import) (export [f (−→ (ge/c 2) (ge/c 4))])
(define x "unknown") (define f1 (λ (n) (∗ n n)))
(define f (guard f1 (−→ (ge/c 2) (ge/c 4))) "server" x)
"default"))

(define client@
(unit "client" (import [f (−→ (ge/c 2) (ge/c 4))]) (export)
(define x "unknown")
((guard f (−→ (ge/c 2) (ge/c 4)) x "client") 2)))

(define link@
(unit "link" (import) (export [f (−→ (ge/c 3) (ge/c 9))])

(define x "unknown")

(define x1 "link" ) (define x2 "link" )
(define f2 (λ (n) (∗ n n)))

(define f1

(guard f2 (−→ (ge/c 2) (ge/c 4)) "server" x1 ))

(define f (guard f1 (−→ (ge/c 3) (ge/c 9)) "link" x))
(begin "default"

((guard f1 (−→ (ge/c 2) (ge/c 4)) x2 "client")
2))))

. . . )

The use of f from the body of client@ has been appropriately al-
tered to refer to the definition f1, which corresponds to the guarded
export of server@, and not f , which is the guarded export of link@.

4.4.2 Guarding Values with unit/c
A unit/c contract requires a few first-order run-time checks. Specif-
ically, the [UC-Unit] reduction ensures that the given value is a unit
and that it has the required exports and imports. For other cases, the
remaining UC rules pinpoint and explain the violation.

The result of a [UC-Unit] reduction is a unit that contains
the additional contract checks on its imports and exports. During
its construction, the reduction renames the definitions inside the
unit. It also replaces all uses of imports with appropriate guard
expressions. Finally, it creates new definitions to guard the exports
listed by the unit/c contract. The new unit is limited to those exports
and to imports listed in the unit/c expression. Those imports that
are listed in the latter, but not imported by the original unit are
added to the import list with the contract that always succeeds.

4.5 Basic Properties of the Model
An operational model of contract checking should validate a basic
property of contracts, namely, that they do not add unwanted behav-
ior. To state this theorem, we need to define two simple operations.
First, let ‖p‖ be the program transformation that removes all blame
strings and contracts from a given program. That means that if p is
a program in the syntax from section 4.1, ‖p‖ is a program in the
syntax from section 2.2.

Second, let eval(p) be the following function:

eval(p) =

8>>><>>>:
n if p 7−→∗ (program d . . . n)
b if p 7−→∗ (program d . . . b)
s if p 7−→∗ (program d . . . s)
closure if p 7−→∗ (program d . . . (λ (x) e))
unit if p 7−→∗ (program d . . . u)

Given these definitions, the basic soundness theorem says that
if a contracted program evaluates to a basic value, then its uncon-
tracted counter-part evaluates to the same basic values. Contracts
do not add behavior.



THEOREM 4.1. For all closed programs p, if eval(ξJpK) = v,
then eval(‖p‖) = v.

The proof for theorem 4.1 proceeds by examining the reduction
sequence for ξJpK and relating it to the reduction sequence for
‖p‖, showing that the extra computation steps added by guard
expressions have no effect on the sequence as a whole, since the
contracts are not broken.

A second theorem proves that a program either evaluates to a
value, diverges, or runs into a well-defined error situation. Note
that this “type soundness” theorem applies to both typed as well
as untyped languages. The difference between the former and the
latter is all about the possible set of errors; the untyped language
may raise errors for cases where the typed language doesn’t allow
execution. Thus, if we use the Flatt and Felleisen [1998] type sys-
tem on our programs, we can state a conventional type soundness
theorem, claiming that the program either produces a value, runs
into an infinite loop, or raises a run-time error.

THEOREM 4.2. For all well-typed programs p, eval(ξJpK) = v,
ξJpK ⇑, or ξJpK 7−→∗ (error s).

The proof for theorem 4.2 uses the proof technique of Wright
and Felleisen [1994]. Specifically, using the Flatt-Felleisen type
system (extended to contracts), a progress lemma ensures that all
typed programs can make progress or raise a contract error. Sim-
ilarly, a preservation lemma validates that if a program reduces to
another and the first one is well-typed, then so is the second one.

5. Implementation
While a model is a mathematically precise explanation of a lan-
guage extension, it often fails to bring across how to add such
extensions to an existing implementation. For example, Flatt and
Felleisen [1998] explains units with a reduction semantics that
copies the bodies of units at will, which would impose a huge over-
head if translated naively into a compilation strategy, Instead, the
unit compiler represents all units as grey boxes and implements unit
linking and invocation via operations on these grey boxes.

In this section, we sketch how to implement our contract model
in the context of a unit system such as the one available in PLT
Scheme. Other dynamic module systems may need a different
treatment, but we expect that the sketch here provides some insight
on how to adapt the model to other contexts. The section starts
with a brief, cursory explanation of how units are implemented,
especially how linking is implemented without copying code. In
the second subsection, we explain how to add contracts to such a
unit implementation. Finally, in the last section, we discuss how to
implement unit/c as a projection [Findler and Blume 2006].

5.1 Implementing Units
At a high-level of abstraction, the PLT Scheme compiles all units
into thunks—parameter-less procedures—that produce two values:

• a mapping M from exports to reference cells; and
• a function f that consumes a mapping from imports to reference

cells and runs the unit’s body.

The compiler replaces uses of the imports in the unit body with
appropriate accesses into the import mapping. It also adds assign-
ment statements below each definition of an export that transfers
the value into the expected reference cell of M.

Given a thunk-based representation of units, a unit invocation
proceeds as follows. An application of the thunk yields two values,
including a function that consumes an import mapping and runs the
body of the unit. Since units are only invoked if their import list is
empty, this function is applied to the empty import mapping and
then executes the definitions and expressions of the given unit.

Similarly, the purpose of linking two (or more) units is to con-
struct a new thunk from the given thunks. This new thunk returns
M and f , which are constructed in a three-step process:

1. It applies the unit thunks for the constituent units, resulting in
two export mappings (M1, M2) and two body functions (f 1, f 2).

2. Next a new export mapping M is constructed from the contents
of M1 and M2.

3. In parallel, a new body function f is constructed. It

(a) receives the import mapping I for the compound unit,

(b) constructs an import mapping I1 from I and M2,

(c) applies I1 to f 1,

(d) constructs an import mapping I2 from I and M1, and

(e) applies I2 to f 2.

Note that the process deals with the bodies of the constituent units
as black boxes, copying not the code in these units but only pointers
to the code.

5.2 Implementing Unit Contracts
Although our model of unit contracts assumes that linking may ac-
cess the unit bodies, doing so for an implementation would radi-
cally alter the way PLT Scheme deals with units. Since we wish to
fall back on a copying compiler, we add contracts only during link-
ing, not to atomic units. Adding the appropriate contract guards in
this manner poses challenges, however, because the values being
guarded are set in the reference cells only after the unit bodies have
been executed.

Our compiler therefore changes how export and import map-
pings work. Specifically, the body function for a unit fixes the im-
port mappings such that when the imports are accessed, a value is
received that has been appropriately wrapped with contracts. This
wrapping must be delayed at least until the first time the import is
accessed, to ensure it is not prematurely requested.

To allow for this delayed wrapping of imports, we alter the
translation of units so that exports are mappings from names to
thunks. The export thunks of atomic units are closed over a refer-
ence cell and simply return the value currently stored. Imports in a
unit body are just translated to an access into the import mapping
and application of the resulting thunk.

When the function f corresponding to a compound unit con-
structs the import mappings I1 and I2, it creates new thunks for
names coming from the export mapping of the other constituent
unit (M2 and M1, respectively). This thunk evaluates the original
thunk from that export mapping, resulting in the exported value,
and then wraps that value with the appropriate contracts. The con-
tracts are those listed by both the exporting and importing units.

5.3 Implementing unit/c
Following Findler and Blume [2006], unit/c denotes a pair of
projections. For function contracts, a projection consumes positive
and negative blame labels and returns a function, which is like the
given one, except that it uses the projections to enforce contracts.

The projection for a unit/c contract returns a function that

1. checks that its input is a unit;

2. checks that the unit imports a subset and exports a superset of
those names listed in the unit/c form;

3. applies the unit thunk to get M and f ;

4. and constructs a unit thunk that constructs a new export map-
ping Mn and function f n and returns both.



The new export mapping Mn contains entries for those names
listed in the unit/c form and maps them to new thunks. Each new
thunk applies the thunk from M to get the exported value, applies
the positive and negative blame labels to the projection correspond-
ing to that name’s contract, and then returns the application of the
projection result to the exported value.

The new function f n takes its import mapping argument I and
performs almost the same alteration as for Mn to create In. The
only difference is that the positive and negative blame are swapped
when applied to the projections. When this step is finished, it
applies f to In.

6. Related Work
Conceptually, the notion of contracts is due to Parnas [1972], who
introduced it together with the notion of modules. Pragmatically,
Meyer [1992] is responsible for the terminology of “design by con-
tracts” and the popularization of the concept in the object-oriented
community. A number of years ago, Findler and Felleisen [2002]
began an exploration of contracts in the world of higher-order func-
tional programming languages; numerous researchers expanded
this exploration to a range of scenarios (lazy functions, lazy data
types, lazy constructors, static analysis of module contracts, and
theorem proving).

Technically our work follows two key pieces of research on
contracts in higher-order functional programming languages. Find-
ler and Felleisen [2002] introduced the idea of adding contracts to
functional languages. Findler and Blume [2006] fleshed out the the-
oretical foundations of contracts by treating them as pairs of projec-
tions, which is currently the basis of implemented contract systems
for higher-order languages.

All prior research on contracts assumes static boundaries be-
tween the parties of a contract and boundaries that are known at
compile time. Our paper is the first to relax these assumptions and
to provide a framework for checking contracts in a world of higher-
order modules.

7. Conclusion
First-class modules are a useful feature in modern programming
languages. From functors in ML, units in PLT Scheme, and com-
ponents in Fortress to trait systems in Smalltalk and Scala, first-
class components allow the programmer to code separate software
components that can be linked together into various arrangements,
facilitating code reuse. Until now, however, these features could
not coexist with software contracts, which allow programmers to
protect their components against abuse.

In this paper we present a design for adding contracts to a lan-
guage with first-class modules. We also sketch how languages with
first-class modules can implement these contracts, describe how to
use the new features to gradually add contracts to a unit-based pro-
gram, and present a contract combinator for units. Our contract
system is part of the latest release of PLT Scheme, available at
http://www.plt-scheme.org/.6
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