
Towards Practical Gradual Typing˚

Asumu Takikawa1, Daniel Feltey1, Earl Dean2, Matthew Flatt3,
Robert Bruce Findler4, Sam Tobin-Hochstadt2, and Matthias
Felleisen1

1 Northeastern University
Boston, Massachusetts
asumu@ccs.neu.edu, dfeltey@ccs.neu.edu, matthias@ccs.neu.edu

2 Indiana University
Bloomington, Indiana
samth@cs.indiana.edu, edean@cs.indiana.edu

3 University of Utah
Salt Lake City, Utah
mflatt@cs.utah.edu

4 Northwestern University
Evanston, Illinois
robby@eecs.northwestern.edu

Abstract
Over the past 20 years, programmers have embraced dynamically-typed programming languages.
By now, they have also come to realize that programs in these languages lack reliable type in-
formation for software engineering purposes. Gradual typing addresses this problem; it empowers
programmers to annotate an existing system with sound type information on a piecemeal basis.
This paper presents an implementation of a gradual type system for a full-featured class-based
language as well as a novel performance evaluation framework for gradual typing.

1998 ACM Subject Classification D.3 Programming Languages

Keywords and phrases Gradual typing, object-oriented programming, performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2015.999

1 Gradual Typing for Classes

Gradual type systems allow programmers to add type information to software systems in
dynamically typed languages on an incremental basis [39, 48]. The ethos of gradual typing
takes for granted that programmers choose dynamic languages for creating software, but also
that for many software engineering tasks, having reliable type information is an advantage.
The landscape of gradual typing includes many theoretical designs [26, 29, 39, 40, 46, 53],
some research implementations [3, 20, 49, 52, 55], and, recently, the first industrial systems
(Typescript [51], Hack,1 Flow2).

Despite these numerous efforts, no existing project deals with the full power of object-
oriented programming in untyped languages, e.g., JavaScript, Python, Racket, Ruby, or

˚ Due to a conflict of interest, we could not submit an official artifact for consideration to the ECOOP
Artifact Evaluation Committee. However, we have prepared an unofficial artifact that is available at
the following URL: http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2

1 See hacklang.org and Verlaguet, Commercial Users of Functional Programming, Boston, MA 2013.
2 See flowtype.org

© A. Takikawa, D. Feltey, E. Dean, M. Flatt, R.B. Findler, S. Tobin-Hochstadt, and M. Felleisen;
licensed under Creative Commons License CC-BY

29th European Conference on Object-Oriented Programming (ECOOP’15).
Editor: John Tang Boyland; pp. 999–1023

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.999
http://www.ccs.neu.edu/home/asumu/artifacts/ecoop-2015.tar.bz2
http://hacklang.org/
http://flowtype.org
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1000 Towards Practical Gradual Typing

(define C1

(class object% (super-new)
(define/public (m) "c1")))

(define C2

(class object% (super-new)
(define/public (m) "c2")))

; f is a mixin, result inherits from C

(define (f C)

(class C (super-new)
(define/public (n)

(send this m))))

(define-values (C1* C2*)

(values (f C1) (f C2)))

class C1(object):

def __init__(self): pass

def m(self): return "c1"

class C2(object):

def __init__(self): pass

def m(self): return "c2"

f is a mixin, result inherits from C

def f(C):

class Sub(C):

def __init__(self): pass

def n(self): return self.m()

return Sub

c1cls, c2cls = f(C1), f(C2)

Figure 1 First-class classes in both Racket (left) and Python (right)

Smalltalk. Among other things, such languages come with reflective operations on classes
or classes as first-class run-time values. See figure 1 for an abstracted example of functions
operating on classes.3 While users of dynamically-typed languages embrace this flexibility
and develop matching programming idioms, these linguistic features challenge the designers of
gradual type systems. Only highly experimental languages in the statically typed world [34]
support such operations on classes, and only our previous theoretical design [46] deals with
the problem of how to turn such a type system into a sound gradual type system.

This paper presents the first implementation of a sound gradual type system for a
higher-order, class-based, practical OO language that supports runtime class composition.
Abstractly, it makes three concrete contributions: (1) design principles for gradual typing in
a higher-order, object-oriented context, (2) a new mechanism to make the soundness-ensuring
contract system performant, and (3) a novel performance analysis framework for gradual
type systems. Our project is based on the Racket language [18], because it comes with a
typical untyped class system [16] and a gradual type system [49] implemented as a library [50].
Furthermore, our previous theoretical design [46] was made with Typed Racket in mind.

Section 2 describes the design and its base principles, while sections 3 and 4 explain the
evaluation. Section 5 presents related work; section 6 suggests general lessons.

2 The Design Space

The design of object-oriented Typed Racket (TR) is informed by basic principles and a
formative4 evaluation. The first subsection explains the principles. The second illustrates
them with a series of examples, focusing on how TR accommodates existing untyped idioms.
The remainder sketches the challenges, solutions, and limitations.

3 We thank Laurence Tratt for inspiring the Python version.
4 We borrow the terms “formative evaluation” and “summative evaluation” from the education com-

munity [36]. A formative evaluation informs the design process; a summative evaluation assesses its
outcome.

A. Takikawa et al. 1001

����������������������������� ���

� ������������������������������������

�
�������������������������
�������������������������

�
���������������������������

���������������������������������

�
���������������������

����������������
��������������������

���������������������
����������������

�

��������������������
�������������������

�

��������������������
������������������

�

��������������������������������������� �

�������������������������������
��������������������������������������

�

Figure 2 Design principles for Typed OO Racket

2.1 By Principle
The design principles of TR fall into two categories: those derived from our previous work
on a gradually typed calculus of first-class classes [46] and our practical implementation
experiences. Figure 2 presents these principles in two columns that correspond to the two
categories: the theoretical principles on the left and their induced implementation concerns
on the right.

Theoretical principles (1–4) Racket supports classes as first-class values, giving rise to
design patterns such as mixins and traits [16]. Class expressions produce class values that
freely flow through the program, including functions and data structures:

; several class values used at run-time

(define (make-class base-class)

(class base-class

(super-new)
(define/public (new-method arg))))

(define c% (make-class object%))

(list c% c% c%)

The first line shows a function that maps a class to a subclass. Such functions are mixins
because they add new points to an existing class hierarchy. The second line shows a use of
the mixin, the third one a list of three class values.

Since class values may appear anywhere and without a statically-known name, we cannot
simply identify classes by their names as in nominal type systems such as those of Java or C#.
Instead we introduce class types that are compared structurally. Put differently, classes are
not identified just by a name, but by the types of their members (i.e., methods, fields, etc.).
This matches up with principle (2) in figure 2; it is also unsurprising as other researchers
have proposed a similar approach [3, 5, 8, 33, 52].

Furthermore, the type system must distinguish the types of classes from the types of
objects, because expressions can yield either of these; see principle 1. In addition, class
types must support polymorphism because mixins are parametrized over base classes. To

ECOOP’15

1002 Towards Practical Gradual Typing

accommodate this idiom, TR’s type system borrows row polymorphism from the extensible
record and object literature; see principle 3.

By (3), the type system restricts row polymorphism to class types and disallows width
subtyping; allowing both is unsound [46]. Conversely, it accommodates existing design
patterns via object types that have width subtyping but lack row polymorphism.

Unlike an ordinary type system, a gradual type system must also support the sound
interoperation of typed and untyped code. In TR, higher-order contracts mediate these
interactions. Concretely, when a typed module in a gradually-typed language exports
to/imports from an untyped one, the type system must translate any type specifications
into contracts that uphold the type’s invariants at run-time. On top of ordinary class
contracts [44], principle (4) requires sealing contracts for protecting mixins and opaque
contracts that prevent untyped programs from accessing hidden methods on objects. These
contracts are applied to the actual class values that flow to untyped code, and thus the
untyped code always interacts with typed values through a protective wrapper that identifies
type violations by blaming the responsible untyped code.

Practical principles (A–E) Principles based on a small calculus [46] never suffice for a
real-world design. In the process of creating TR’s gradual type system, five additional design
concepts emerged, which we consider as fundamental as the theoretical ones.

The separation of class types from object types calls for a linguistic mechanism that
derives types of instances from types of classes or vice versa. The key to this syntax
design is to choose a convenient default choice. From this perspective, it is important that
instance types are easily synthesizeable from a class type while the type of an instance lacks
information—e.g., the constructor—that is needed to reconstruct the type of the class. This
insight naturally leads to a choice that makes class types the primary vehicle and introduces
an Instance type constructor for the derivation of object types from class types.

While a gradual type system for dynamic classes demands the introduction of structural
types, writing down such types imposes a significant notational overhead. In practice, class
definitions consist of nests of deeply interwoven “has-a” or “is-a” relationships. For example,
one class type from TR’s standard GUI library consists of 245 methods signatures, and
moreover, the type refers to instances of 23 other class types plus itself. Not surprisingly,
some of these 23 class types refer back to the original class type. In short, a gradual typing
system for a dynamic object-oriented language needs a powerful construct for defining large
mutually recursive types.

To accommodate sharing of features in class types, TR’s Class type constructor comes
with an optional #:implements clause that allows a given class type to copy another class
type’s member definitions. Principle (B) captures this point.

One way to accommodate nests of self-recursive and mutually-recursive type definitions
is to encode them with ordinary µ-types [11], which already exist in functional TR. Simple
experiments in writing types for our GUI library expose the drawbacks of this approach.
Therefore TR instead provides define-type, a novel5 form of mutually-recursive structural
type definitions. It makes up for the lack of type recursion through class names that
nominally-typed language such as Java get for free. These named class types are not nominal
as in Java because the equivalence between two type definitions is always determined by

5 Superficially, these mutually recursive type definitions resemble OCaml’s mutually recursive classes, but
the two differ starkly. Our design separates the class type definitions from the definitions of the actual
classes and allows semantic forward declarations without imposing syntactic ones.

A. Takikawa et al. 1003

structural comparison and recursive unfolding. At the same time, our type definitions retain
the simple syntax of type aliasing.

Real-world programming also means reducing the number of required type annotations. A
gradual type system therefore needs an algorithm that reconstructs some types automatically
(principle D). Module-level type inference à la Hindley & Milner causes too many problems,
however. Hence, TR locally infers the types of class members when possible, e.g., fields
initialized with literal constants.

Finally, by its very existence, the theoretical work [21, 25, 41] on collapsing higher-order
run-time checks implicitly conjectures that layering proxy wrappers around values causes
a degradation in the performance of gradually typed programs. In contrast, the extensive
use of functional Typed Racket over six years in open-source and industrial projects had up
to now not provided practical evidence for this prediction. The addition of object-oriented
features to Typed Racket reveals that the possibility is indeed real. The naïve extension of
Typed Racket suffers from exponential growth in object wrappers on real-world examples. It
is likely that higher-order object-oriented programs are prone to these kinds of interactions
due to the widely used model-view architecture. In any case, our work finally demonstrates
the practical need of optimizing for space usage.

Constructively put, we articulate principle (E). All implementations of sound gradual
type systems with structurally typed classes need a way to merge layers of proxy wrappers.
One such implementation in the literature, Reticulated Python [52], strictly follows Siek
and Wadler’s theoretical proposal of collapsing casts into “threesomes” [41]. Typed Racket
employs an alternative solution, which is sketched in section 4.3.

2.2 By Example

To provide evidence that our design ideas from the previous section scale to real code, we
walk through a series of examples extracted from our case studies described in section 3. In
particular, the examples demonstrate how to add types to untyped code, how typed and
untyped code interact, and how the type and contract systems can handle untyped idioms.

Augmenting an existing codebase Recall that the gradual-typing thesis states that a
maintenance programmer ought to be able to augment an existing untyped code base with
types in order to benefit from their software engineering advantages, and to ensure that
future programmers will continue to receive those benefits. Our illustration starts with an
excerpt from the Racket Esquire program in figure 3 [15], which implements a bare-bones
interactive editor combined with a Lisp-style Read-Eval-Print-Loop. The excerpt showcases
the definition of a typical mixin.

This particular mixin, named esq-mixin, adds REPL capabilities to a base text editing
class, such as the text% class from the GUI standard library on the last line.

The body of the mixin uses class to derive a subclass from base-class, the function’s
parameter. The rest of the class form contains typical elements of object-oriented program-
ming: a call to a superclass constructor, several private fields, public method definitions,
and an overriding method definition. As in C#, overriding methods in Racket are expli-
citly signaled with a define/override keyword. The inherit form both ensures that the
superclass contains the given method names and allows the given superclass methods to be
called without explicit super calls. The call to new-prompt in the class body executes when
an instance of the class is constructed. In general, any expressions in the class body are run
as part of the class’s instantiation process.

ECOOP’15

1004 Towards Practical Gradual Typing

(define (esq-mixin base-class)

(class base-class

(super-new) ; run the superclass initialization

; inherit methods for use from the superclass

(inherit insert last-position get-text erase)

(define prompt-pos 0) (define locked? #t) ; private fields

(define/public (new-prompt)

(queue-output (λ () (set! locked? #f)

(insert "> ")

(set! prompt-pos (last-position)))))

(define/public (output str)

(queue-output (λ () (let ([was-locked? locked?])

(set! locked? #f)

(insert str)

(set! locked? was-locked?)))))

(define/public (reset)

(set! locked? #f) (set! prompt-pos 0)

(erase)

(new-prompt))

(define/override (on-char c)

(super on-char c)

(when (and (equal? (send c get-key-code) #\return) (not locked?))

(set! locked? #t)

(evaluate (get-text prompt-pos (last-position)))))

(new-prompt))) ; method call during class initialization

(define esq-text% (esq-mixin text%)) ; application of the mixin

Figure 3 Racket Esquire, untyped

Our code snippet in figure 3 calls for two pieces of type information: the mixin’s argument
and the public methods in the mixin’s result. Furthermore, since the mixin is polymorphic,
we explicitly specify a row variable for the mixin’s type. Figure 4 shows the mixin with a
type annotation that encodes the required information.

The top of figure 4 displays a definition for Esq-Text%, the type for esq-text%. We also
use it for the type annotation on esq-mixin. We take advantage of the Class constructor’s
built-in support for type inheritance to make Esq-Text% inherit from the Text% type defined
in TR’s base type environment.

Since esq-mixin is a row polymorphic function, we annotate it with the All and -> type
constructors. Given the two type definitions Text% and Esq-Text%, we can describe the
domain and result types of the function type. Both Class types specify two key pieces:
the types are row polymorphic due to the #:row-var r clause and the types inherit from
existing structural types Text% and Esq-Text%, respectively. The former indicates that the
class contains an unspecified set of additional methods or fields that are determined when
the mixin is actually applied.

The method types inherited from Text% and Esq-Text% are used to type-check the body
of the mixin. For example, the types of inherited methods such as insert are deduced from
Text%. The types on the public methods are given in the definition of Esq-Text%. The types
for the public methods document the methods’ arguments and their effectful nature.

A. Takikawa et al. 1005

; in module Library

(define-type Esq-Text%

(Class #:implements Text%

[new-prompt (-> Void)]

[output (String -> Void)]

[reset (-> Void)]))

(: esq-mixin (All (r #:row)

(-> (Class #:row-var r #:implements Text%)

(Class #:row-var r #:implements Esq-Text%))))

(define (esq-mixin base-class) (class base-class)) ; as before

Figure 4 Racket Esquire, typed

(Class #:implements Text%

[new-prompt (-> Void)]

[output (String -> Void)]

[reset (-> Void)])

(class/c ; many cases elided from Text%

[new-prompt (-> void?)]

[output (-> string? void?)]

[reset (-> void?)])

Figure 5 Translating a type to a contract

In this example, Typed Racket requires a single annotation to type-check the mixin, which
reflects principle E from figure 2 about reducing the burden on the maintenance programmer.
In particular, none of the private members or inherited fields need annotations.

Cooperating with untyped code Imagine that esq-text% is integrated into a complete
project where other code—say an IDE system—remains untyped. In order to ensure that the
widget’s type invariants are upheld, the system must dynamically check that the untyped
code uses the widget safely.

Concretely, consider a program divided into Library and Client modules. The Library
module provides the Esquire text editing functionality, while the Client module uses it as
part of a larger program. Since the Client imports the esq-text% class, the class value itself
flows from the Library, passing through a boundary between the typed world and untyped
world on the way.

Now consider a concrete snippet from the Client module:

; in module Client

(require "library.rkt")

(define repl-text (new esq-text%))

(send repl-text output 42)

The method invocation with send clearly violates the String type specified on the output

method. Although the type-checker would catch such a mistake for the Library module, it is
unable to inspect the untyped Client code.

Instead, the type-checker translates the type to a contract that ensures the type invariants.
Figure 5 shows the result of (automatically) translating the type for the Esquire class to

ECOOP’15

1006 Towards Practical Gradual Typing

a matching class contract. As explained in section 2.1, these class contracts are opaque,
meaning they disallow the export of a class with methods not explicitly listed in the type.

When classes flow from untyped modules to typed modules, the typed code must specify
types for these imports. Suppose that we need to import the text% class directly from the
standard, untyped GUI library. Assuming Text% is defined, the typed portion could use an
import specification like this:

(require/typed racket/gui

[text% Text%])

The require/typed form in TR imports the given bindings with the given type specifications.
As before, these types are translated to contracts, ensuring that the imports live up to the
desired specifications.

Mixins and typed-untyped interoperation Let us illustrate the typed-untyped interopera-
tion with an example of a mixin from the Big-Bang event-based functional I/O library. The
library uses mixin methods such as these:

; if no callbacks are provided (on-key, on-pad, on-release), don't mix in

(define/public (deal-with-key base-class)

(if (and (not on-key) (not on-pad) (not on-release))

base-class

(class base-class

(super-new)
; the method invokes the callbacks supplied by the user

(define/override (on-char e) ...))))

This method accepts a class argument named base-class and, when appropriate, returns
a subclass that adds a custom key event handler. The method’s implicit precondition
requires that the class base-class already contains a on-char method to be overridden. The
remaining members of the class are unconstrained.

To import a class with such method, a programmer may write

(require/typed
[world% (Class ...

[deal-with-key

(All (r #:row) ; method types elided for space

(-> (Class #:row-var r [on-char ...])
(Class #:row-var r [on-char ...])))])])

The (automatic) translation of a row-polymorphic function type into a contract requires a
seal [46] for the deal-with-key method:

(sealing->/c (X) [on-char]

(and/c X (class/c [on-char ...]))
(and/c X (class/c [on-char ...])))

The sealing->/c combinator creates a function contract that generates a fresh class seal
when the wrapped function is applied. The occurrences of X in the body of the combinator
are replaced at run-time with either a sealing or unsealing operation depending on whether
the variable occurs in a negative or positive position. Each seal lists those class members
that are left unsealed (here, the on-char method); all unmentioned members are hidden.
Thus the method contract above explicitly seals off all members from the argument class
base-class in the implementation except on-char. This prevents the mixin from adding
or overriding any methods other than on-char, which matches the polymorphic type and
expresses the intent of the method in a precise manner.

A. Takikawa et al. 1007

Examples of mutually-recursive type definitions The complex relationships between classes
in practice requires the use of mutually-recursive type definitions, see figure 2 (C). The type
for the text% class is highly illustrative:

(define-type Text-Object (Instance Text%))

(define-type Text%

(Class ; 244 other methods ...

[set-clickback

(Natural Natural (Text-Object Natural Natural -> Any)

-> Void)]))

The set-clickback method for text% objects installs a callback triggered on mouse clicks for
a region of the text buffer. The type for that callback function recursively refers to the Text%
type via the Text-Object definition. No explicit recursive type constructors are necessary
to write the type down. Under the covers, TR establishes the recursion through the type
environment, even though Text% is not a nominal type.

2.3 From Types to Contracts: An Implementation Challenge
Soundness calls for run-time checks that enforce the type specifications when a value flows
from the typed portion of a program to an untyped one. All theoretical designs choose either
casts or contracts for this purpose. GradualTalk [3] and Reticulated Python [52] rely on
the former; research in this realm focuses on what kind of casts to implement and how this
choice affects the expressiveness of the language and the efficiency of programs. In contrast,
TR is the first implementation of a gradually typed, object-oriented languages that uses
higher-order contracts instead of casts.

Although the homomorphic translation from types to contracts (illustrated above) is easy
to use in theory work [46], implementing it for practical purposes is not easy. For the kinds
of structural types used in the TR code base, it generates excessively large contracts. To
achieve reasonable results, it is critical to treat the problem of translating types to contracts
as a compilation problem that requires an optimization phase.

Based on several failed attempts, TR now compiles a recursive type to a recursive
declaration of mutually recursive contracts for each dependency. To create contracts of
manageable size, the analysis of the dependencies among the type definitions finds cycles in
the dependency graph. Definitions within these cycles are lifted and memoized. Definitions
that do not participate in cycles incur no overhead.

2.4 Limitations
TR currently suffers from a few limitations, which include some workarounds for our case
studies, but rarely prevent the conversion of an untyped module.

Row polymorphism on objects Our system provides row polymorphic types for supporting
mixins, but only class types are allowed to contain row variables. Unlike most designs
with row polymorphism such as OCaml, the types for objects are concrete and support
standard width subtyping. This tradeoff works well for most of our examples, because
Racket programmers are often content with Java-style use of classes. Our choice rules out
row polymorphic functions that construct an object from a given class or the use of row
polymorphism to emulate bounded polymorphism for objects. In practice, the lack of row
polymorphism for objects prevents us from porting a single module in the DrRacket IDE.
We conjecture that adding bounded polymorphism to Typed Racket would fill this gap.

ECOOP’15

1008 Towards Practical Gradual Typing

Racket

type system
design

and implementation
(section 2)

soundness theorem
(Takikawa et al. 2012)

usability
study

(section 3)

performance
evaluation
(section 4)

����� ��������
�������

�����������
������

Figure 6 The feedback cycle for Typed OO Racket

Occurrence typing for OO code One of the important features of functional TR is its use
of occurrence typing [49]. To accommodate dynamic type-tag tests, TR refines the types
of variables depending on where they occur. If, say, a dynamic test checks whether x is
a non-empty list or y is a number in a specific interval, their types in the then and else

branches of a conditional reflect the possible results of these checks. Occurrence typing
is crucial for porting untyped programs into the typed world because the former often
discriminates elements from unions of data via predicates.

Sadly, while TR supports occurrence typing on private class fields, it cannot support two
important uses for OO constructs: (1) recovering object types from uses of is-a?, which
is like instanceof in Java, and (2) occurrence typing on public fields. For an example of
the first, suppose we export the typed esq-text% class from earlier to untyped code. If we
encounter the test (is-a? an-object esq-text%) in typed code, we would like to conclude
that the value an-object has the type (Instance Esq-Text%). Unfortunately, this is unsound
if an-object originates in untyped code, since the untyped code may have subclassed esq-

text%, overridden its methods with ill-typed implementations, and constructed an-object

from that subclass. Closing this gap requires additional research.
For the second problem, consider how a concurrent thread may mutate a public field

between a tag check and the execution of the corresponding branch of the conditional. An
application of occurrence typing could then lead to an incorrect type for a field based on an
out-of-date tag check. We therefore will investigate immutable public fields in the future.

3 Effectiveness Evaluation

Like all good design efforts, our design of Typed Racket takes place in the context of a
feedback cycle. Figure 6 visualizes our particular feedback loop. With respect to this paper,
two elements stand out: the usability study and the performance evaluation. This section
presents the former for Typed OO Racket and its design impact. The next section introduces
a novel performance evaluation framework and discusses how it influenced the design.

The usability evaluation aims to test three hypotheses:6
1. Typed Racket enables programmers to add types in an incremental manner, including for

components that dynamically create and compose classes. This hypothesis demands two
specific qualities from the type annotation process: the burden of adding type annotations
must be small, and the program logic should rarely change.

6 Our goal is not to determine whether static typing per se contributes to software maintenance, deferring
instead to the existing literature [22].

A. Takikawa et al. 1009

2. Each theoretical design principle (1–4) is needed for realistic programs.
3. Each practical design principle (A–E) helps annotate realistic programs.

3.1 Cases
The evaluation was conducted in two stages: a formative evaluation and a summative one.
For the summative evaluation, the programmer had no prior knowledge of Racket’s class
system or Typed Racket’s gradual type system.

With two exceptions, the code bases in this section come from the mature Racket
distribution. The newest dates from Racket version 5.3.2, released in January 2013; the rest
have been shipped in user-tested distributions for a minimum of two years and some for
nearly twenty years. The two exceptions are Acquire and Esquire.

Our formative evaluation employed four case studies: a tool that inserts Large Letters into
a program text, a Tooltip drawing library, the functional Big-Bang I/O library [12], and Esquire.
The Big-Bang case study is about annotating the library’s graphical core while leaving the
remaining pieces untyped. Finally, Esquire is a graphical REPL that illustrates the essential
elements of DrRacket; some of the code snippets in section 2 are taken from Esquire.

The nine cases included in the summative evaluation cover the full range of object-oriented
programming idioms in Racket. Several cases are extracted from a package of games that are
included in the Racket distribution: Mines, a graphical Minesweeper game, Slidey, a puzzle
game, Cards, a library for the standard 52-card deck, and Aces and GoFish, two games using
Cards. The Markdown component is one of several renderers for the Scribble documentation
language [14]. The DB case study covers a library that provides access to SQLite databases.
Finally, the Acquire board game is a project from a programming course that represents an
interactive system with a user API.

Since the purpose of the case study is to evaluate a gradually typed system, the addition
of type annotations to modules was not exhaustive. Instead, the key modules of each program
were ported, with an emphasis on modules that used objects and classes.

3.2 The Process
Some of the code comes with comments, behavioral contracts, or documentation that
describe the “types” of methods and fields. Injecting types into such pieces of code is often
straightforward, though the specifications are sometimes out-of-sync with the program logic.
When the code lacks specifications, the maintainer must reconstruct them from the program
logic. This ranges from easy (e.g., for fields with an initial value) to difficult (e.g., methods
with complicated invocation protocols).

Over the course of the typing process, a developer iteratively acquires an understanding
of the code and adds type annotations until the type-checker is satisfied. In practice, the
developer may need to modify the program logic or add assertions or casts to force type
checking. Even after the type-checker approves the component, the typing effort is not
over. Components that interact with other untyped components do not run correctly if an
impedance mismatch exists between the types specified in an import statement and the
run-time behavior of the untyped components. Hence, the developer runs the program on its
test suite and improves the types in response.

3.3 Quantitative Results
Concerning metrics, we follow the precedent for functional Typed Racket [47]. These metrics
are chosen to judge whether a developer can gradually equip a code base with types: the

ECOOP’15

1010 Towards Practical Gradual Typing

Program Let TT BB Esq Mi Card Mdn DB Acq GF Ace Sld
Lines 216 218 1077 177 533 620 328 749 1419 443 333 357
% Increase 2 7 11 11 13 19 16 23 20 11 5 15
Useful ann. 11 9 85 8 22 38 27 31 83 30 13 21
λ: ann. 0 0 15 4 38 5 4 3 19 12 10 2
Other ann. 14 7 29 0 4 17 0 2 12 5 0 4
Type def. 0 0 7 0 6 5 1 13 21 1 2 2
Typed req. 0 0 20 0 0 1 3 35 71 3 2 0
Assert/cast 4 3 25 1 10 4 11 5 13 3 0 9
Ann./100L 12 8 12 7 13 10 10 5 9 11 8 8
Problems 4 3 12 1 5 5 2 6 4 1 2 1
Fixes 1 1 1 0 1 1 2 2 0 1 0 1
Theo. princ. 4 1–4 1–4 – 1,3 1,3,4 2–4 1–4 1,3 – – –
Prac. princ. D A,D A,B D A,B A,B B,D A–D A–E A A A,B

D D D D
Time – – – – 9h 7h 7h 7h 11h 1h 4h 5h
Difficulty ‹ ‹ ‹‹‹ ‹ ‹ ‹‹ ‹‹‹ ‹‹‹ ‹‹‹ ‹ ‹ ‹

Figure 7 Case study results

size of the code plus the number of type declarations, type annotations, and type assertions.
The latter are important because the annotations are also software artifacts for which a
developer must accept maintenance responsibility. In addition, we report how many changes
to the program logic are needed to accommodate the type system, because such changes may
potentially alter the program’s behavior.

Figure 7 reports the results in a table. The detailed interpretations of the rows are as
follows. The Lines row indicates the total number of lines in the ported program while the %
Increase row denotes the percentage of the total added by porting. The Useful annotations
row consists of the number of identifiers given types; for example, the method type in the
following excerpt from Big-Bang counts as useful:

(: show : Image -> Void)

(define/public (show pict0) ...)

In contrast, annotations added for the sake of the type-checker are not counted in this category.
The λ: annotations row contains the number of annotations for function parameters of typed
lambda expressions; these do not count toward the useful category because their types are
often obvious from context, but the type system cannot infer them. The remaining Other
annotations category covers the rest.

The Type definition row describes the number of type definitions added. As section 2
explains, many uses of define-type introduce names for class types. The Typed require row
counts the number of bindings that are imported from untyped code using require/typed.
The Assertions / casts row counts the number of assertions and casts used to assure the
type-checker. The Ann. / 100L row shows the number of type annotations per one-hundred
lines of code, rounded to the nearest integer.

The Fixes row indicates the number of error (correction)s due to types while Problems
counts the changes made to circumvent limitations or over-approximations in the type-checker.

The Theoretical/Practical principles rows note principles (1-4) and (A-E) from figure 2
that apply to the code base. The Time taken row measures the number of hours (rounded

A. Takikawa et al. 1011

up) taken to annotate and modify the code and finally the Difficulty describes the subjective
difficulty of porting the code from ‹ (easy) to ‹‹‹ (hard).

All case studies rely on types for Racket’s standard libraries, i.e., the base type environment.
In addition to the core bindings provided by functional Typed Racket, our case studies use
extra standard libraries such as the GUI libraries, drawing libraries, and core documentation
libraries. We do not count the annotations in the base type environment for the line numbers
above because they are shared across all programs.

3.4 Qualitative Results
Principles Figure 7 lays out which design principles from figure 2 were necessary for porting
each code base. While subjective, we judged each code base with consistent criteria for each
principle. For example, we decided that a code base required principle (1) if it used both
class and object values. If a code base additionally used Instance type constructors, it fit
principle (A). Principles (2) and (3) applied to any code base that used row polymorphism.
Additionally, we checked (2) for any code base that used obviously structural types.

For (B) and (C), we determined whether the code base directly used define-type with a
#:implements clause or with mutual-recursion, respectively. All of the case studies except
Markdown, DB, and Acquire used mutually-recursive type definitions because of their dependence
on the GUI standard library, but we did not count these indirect uses. For (4), we included
any code bases that exported classes and/or objects to untyped code or imported them from
untyped code. We recorded (D) if classes in the code base left out type annotations that TR
would reconstruct. Only Acquire needed (E) due to exponential proxy layering.

Difficulty The projects marked with ‹‹‹ in the case studies share some of the following
characteristics: (1) the data definitions and the code structure pose comprehension problems,
(2) the code base uses language constructs that are difficult to describe with types, or (3) the
control flow of the program makes the synthesis of type annotations difficult. The Markdown
program fits the first case due to the use of 29 nested and recursive data structures in its
logic. The Big-Bang program exemplifies the second characteristic. In Big-Bang, the primary
class uses methods that act as mixins on other class values. Furthermore, the program also
uses synchronization constructs for concurrency, syntactic extensions that construct methods,
and I/O through the graphics layer and the networking library. Finally, the DB library uses
complicated error handling that requires the programmer to track control flow when adding
type annotations.

3.5 Problems and Fixes
The case studies identify several pain points in the system. Broadly speaking, these points
take the form of syntactic overhead in type annotations or additional code necessitated by
the type-checker. Here we list the three worst problems and explain how TR addresses them.

First, the #:implements shorthand for writing class types does not copy the types for
constructor argument types because the constructor arguments may change. That is, a
subclass does not necessarily use a superset of its parent constructor arguments. This design
decision incurs some cost—in the form of larger types—for the case studies. To eliminate
this limitation, TR now comes with a #:implements/inits form, which propagates the
constructor types.

Second, the lack of occurrence typing for public fields forces a workaround to satisfy the
type-checker. The workaround declares a local variable that holds the current value of the

ECOOP’15

1012 Towards Practical Gradual Typing

public field, which enables type refinement via occurrence typing on the local version. This
works only when the field is not modified concurrently.

Third, the type system cannot propagate occurrence typing information or reason with
enough precision about the expansion of syntactic extensions. These cases require re-writes
with different functions or syntactic forms. An example of the former occurs in the Big-Bang
library, for which the excerpt (inexact->exact (floor x)) is rewritten to (exact-floor

x) to accommodate the type-checker. For the latter, our port of DB modifies a use of the
case form, which provides simple pattern matching, to use cond, a general conditional form.
Fortunately, both rewrites are simple and local.

3.6 Discussion
For the first hypothesis, we consider whether the effort of adding types to the code bases is
reasonable. The overall increase in the number of lines for our object-oriented programs—
about 15% across all code bases—is greater than the 7% increase across all of the programs
ported in the functional world [47]. We conjecture two explanations: (1) structural type
specifications for object-oriented programs are often larger and more complex than function
types, and (2) the object-oriented part of Typed Racket lacks syntactic support for formulating
concise types. In particular, Typed Racket does not derive class types from class definitions.

Additionally, the code bases that we could not include in our investigation are relevant
for the first hypothesis. We rejected several code bases from the case study for three reasons:
they use Racket’s first-class modules, they call for the reflection API on records, or they
require row polymorphism for objects. Only the third omission points to a flaw in our type
system design; the first two are general Typed Racket limitations. The third point prevented
the porting of only a single small module, and we thus consider the first hypothesis validated.

As for the second hypothesis, seven out of the twelve case studies require half or more of
the theoretical design principles from figure 2. The ones that require the fewest are Esquire,
Go Fish, Aces, and Slidey, which are all self-contained and do not use mixins. Due to their
self-contained nature, these programs also do not require extensive contract checking.

For the third hypothesis, we also see that most of the case studies rely on three or more of
the practical design principles. The least directly used is mutually-recursive type definitions
(C). As noted above, however, the feature is heavily employed in the common base type
environment and is therefore indirectly used everywhere.

4 Performance Evaluation

Gradual typing suggests that a programmer who performs maintenance work on existing code
(re)discovers the types behind the design and adds them to the code base. Each conversion
may put up a new higher-order contract boundary between two components, which may have
negative consequences for the performance of the overall system. In theory, a completely
converted program—without casts or type assertions—should have the same performance as
a completely untyped one, because the type checker simply removes types in this case.7

A performance evaluation must therefore consider all possible paths from an untyped
system to a completely typed one through the lattice of possibilities. Thus far, the gradual
typing literature has not presented any results for such experiments. In this section we present
the first results of such a performance analysis and explain its role as a formative element

7 Typed Racket currently performs local optimization on some simple datatypes [50].

A. Takikawa et al. 1013

of our design process. Specifically, we explain our methodology in some detail, present
the results of two experiments, and explain the performance pitfalls that these formative
evaluations found and our fixes.

4.1 Methodology
The runtime cost of a (sound) gradual type system is a function of boundaries between typed
and untyped pieces of code. As the programmer chooses to create such boundaries via type
annotations, the system migrates through a space of possible boundary configurations. In
Typed Racket, these boundary configurations are determined mostly by which modules are
typed and untyped. The path through the space of mixes of typed and untyped modules
starts at the fully untyped program. At each step, one more piece is annotated with types.

For example, the lattice in figure 8 shows the simplified configuration space (of four
modules) for Acquire. Each node in the lattice contains four boxes whose shading indicates
whether it is typed or untyped. The horizontal bottom box represents an I/O library that
remains untyped throughout the process.8

During the implementation of Typed Racket, we used the following, modest working
hypothesis based on Safe TypeScript’s experience of 72x slowdowns [32, pg.12]:

no path through the lattice of configurations imposes an order-of-magnitude degradation
of run-time performance at any stage.

Pragmatically put, a programmer may add types anywhere in the program without slowing
down the program more than a factor of 10.

We used two of our case studies to investigate this hypothesis: Acquire and Go-Fish.
For each case study, we converted the primary modules—excluding infrastructure modules
such as the I/O library mentioned above—and then scripted the generation of all possible
configurations.9 Each configuration was run 30 times on a stand-alone Linux 3.16 computer
with an Intel Core i7-3770K CPU and 32GB of memory.

4.2 Results and Preliminary Interpretation
Figure 8 annotates the lattice of configurations with timings—shown below the modules—that
are normalized to the baseline of the fully untyped configuration. The figure also displays
normalized standard deviations. An inspection of the lattice reveals that choosing the
outermost paths degrades the performance quickly, while some of the innermost paths reduce
the performance in a gradual manner. At the worst points, a gradually typed program is
almost 40% slower than an untyped program; at the top, we find a fully typed program that
is still 39% slower than the fully untyped program.10

A large fraction of the additional cost is due to the boundary between the untyped library
modules in Acquire (the horizontal white box in the figure) and the typed modules. Some of
the cost is due to the boundaries among the four central modules. Critically no configuration
slows down performance by an order of magnitude.

8 Adding coarse types to this library is easy but useless; adding precise types is currently impossible.
9 The scripting required introducing additional typed wrapper modules in some cases to provide extra
type signatures. We consider these wrappers to be part of the infrastructure modules.

10Earlier versions of Typed Racket caused overheads of up to around 3.4x slowdown on Acquire but still
did not exceed 10x. The overhead was brought down to current levels by compiling object types to
more efficient contract forms.

ECOOP’15

1014 Towards Practical Gradual Typing

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

��������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

��������
a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

��������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

���������

a
d
m
i
n
.
r
k
t

p
l
a
y
e
r
-
f
a
c
t
o
r
y
.
r
k
t

p
l
a
y
e
r
.
r
k
t

t
r
e
e
.
r
k
t

libraries

������

kinds of
modules

convertible
modules

T
y
p
e
d

U
n
t
y
p
e
d admin.rkt

player-factory.rkt
player.rkt
tree.rkt

Figure 8 Lattice results for Acquire

A. Takikawa et al. 1015

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

���

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

���������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

������

c
a
r
d
-
c
l
a
s
s
.
r
k
t

c
l
a
s
s
e
s
.
r
k
t

g
o
f
i
s
h
.
r
k
t

m
a
k
e
-
c
a
r
d
s
.
r
k
t

libraries

���

kinds of
modules

convertible
modules

T
y
p
e
d

U
n
t
y
p
e
d card-class.rkt

classes.rkt
gofish.rkt
make-cards.rkt

Figure 9 Lattice results for Go-Fish

ECOOP’15

1016 Towards Practical Gradual Typing

Figure 9 collects the results of evaluating the lattice for the four modules11 in Go-Fish.
Many paths from bottom to top go through only one point in which the performance
degradation is worse than 10%. There is also a single path along which the overhead never
exceeds 5%. In no case does the timing exceed 1.33x of the baseline. The lattice also shows
which modules add costs when they are typed. For example, the lattice shows that the typed
classes.rkt module adds significant overhead unless gofish.rkt is also typed.

4.3 Problems and Fixes

The first implementation of OO support for Typed Racket falsifies even the modest working
hypothesis, revealing a major problem in the language’s run-time infrastructure. Concretely,
running some configurations exhibits exponential degradation in performance, both in terms
of space and time consumption. Indeed, some configurations no longer terminate. This
section explains the problem and sketches how our second implementation of OO support for
Typed Racket solves it. This solution is an implementation of principle (E) from figure 2.

As mentioned in section 2.1, Typed Racket compiles types for module exports and imports
into Racket’s contracts so that untyped modules cannot violate the type invariants. For plain
values, a contract just checks that the value conforms to the type. For higher-order values,
e.g., objects and classes, the contract system wraps the value with a proxy value—called
chaperones [45] in Racket—that interposes on all accesses and method calls. If the proxy
wrapper discovers any bad behavior, it blames the module that agreed to the contract and
violated it, which is critical because wrapped values can flow arbitrarily far away from the
contract boundary before a violation shows up.

Given this background, the problem is easily explained. Every time a higher-order value
flows from a typed module to an untyped one or vice versa, the run-time system wraps it
with a proxy layer. A method call may add another layer because the method’s signature
may impose type invariants. If this boundary-crossing occurs in a loop, layers can quickly
accumulate. The growth in layers is exponential with respect to the number of boundary
crossings. In the worst case, each round-trip corresponds to a doubling in the number of layers,
which explains the exponential consumption of space (wrappers) and time (interposition).

Figure 10 illustrates the idea with a minimal example using a class with a single method;
the example distills a problematic two-module fragment from Acquire. Method m in obj

is defined and exported (to "B.rkt") with a recursive, higher-order contract—a common
phenomenon in the object-oriented world where classes and objects refer to themselves. The
expression (loop obj) kicks off the program, starting a loop that calls the method m on
the object. While this loop uses a finite amount of space in the absence of contracts, the
evaluation of (send obj m obj) applies the domain contract on m to the argument, which is
obj including its sole method.

When the loop starts up, obj is already wrapped in one proxy layer due to bubble/c from
contract-out. The domain contract of m wraps another layer around obj, which increases
the number of chaperones to two. Once m returns obj, the range contract on m wraps a final
layer around the object, increasing the number to three. For the next iteration, obj starts
with three layers that enforce bubble/c. Since obj is both the target and the argument in
(send obj m obj), each of the domain and range contracts are applied three times, once per

11We started out with five modules in the Go-Fish experiment but found that one module was never
run—and thus did not affect the benchmark runtime—therefore we chose to keep it untyped to make
the results clearer.

A. Takikawa et al. 1017

#lang racket ; A.rkt

(provide (contract-out [obj bubble/c]))

(define bubble/c

(recursive-contract

(object/c [m (->m bubble/c bubble/c)])))

(define obj

(new (class object%

(super-new)
(define/public (m x) x))))

#lang racket ; B.rkt

; The driver module, kicks off the

; problematic loop below

(require "A.rkt")

(define (loop obj)

(loop (send obj m obj)))

(loop obj)

Figure 10 Exponential wrapping

existing layer. In short, the number of layers doubles to six. This doubling occurs on each
iteration and thus causes exponential memory use.

Our revised implementation of TR solves this problem, loosely based on two theoretical
investigations mentioned above. Concretely, Herman et al. [25] compile the contracts in their
surface language to a Henglein-style coercion calculus, in which multiple levels of coercions
can be eliminated—though without respect for blame information. Siek and Wadler [41]
collapse layers of coercions into a representation that includes the greatest lower bound of all
types involved in a sequence of wrappers—and thus preserve blame information. Although
these theoretical solutions do not apply to Racket’s contract system directly, the idea of
collapsing layers is applicable to our system.

The current implementation of TR improves the first one in two regards. First, Racket’s
revised contract system checks whether an existing contract implies one that is about to
be wrapped; if so and if the blame information is identical, the new wrapper is not created.
Second, Racket’s revised proxy mechanism allows dropping a layer in special cases. In
particular, some proxies can be marked as containing only metadata with no interposition
functions. The run-time system allows such proxy layers to be removed and replaced. By
encoding blame information in these metadata proxies, it is possible to replace layers instead
of adding redundant ones. This optimization currently works only for object contracts; we
intend to generalize it for other language constructs in the future. Together these two changes
removed all performance obstacles and enable the revised TR implementation to validate
our modest performance hypothesis.

4.4 Threats to Validity
Our formative performance evaluation suffers from some shortcomings that suggest it might
not be representative for a summative evaluation. First, the experiments evaluate only the
overhead of the contracts created by the typed-untyped boundary. Second, they ignore the
overhead due to modifications of the program logic. If a programmer changes the code to
accommodate the type checker or inserts a cast, the current evaluation attributes this cost to
the typed/untyped boundaries.12 Third, our module boundaries may not be representative

12The Go-Fish experiment runs in headless mode because casts in the GUI code are excessively expensive
at the moment. We are investigating the cause.

ECOOP’15

1018 Towards Practical Gradual Typing

because we merged some smaller modules (e.g., 10 lines of code) in the code bases into larger
ones in order to reduce the lattice size. Since the lattice grows exponentially in the number
of modules, exploring the full lattice would take too much time. Fourth, the top of the
lattice does not correspond to a program in which every single module is exhaustively typed;
infrastructure modules and difficult-to-type modules are left out. Finally, the experiments
suffer from somewhat imprecise measurements. In particular, they execute untyped module
in a typed/no-check mode, meaning the modules still load Typed Racket’s run-time library.

5 Related Work

Since this paper reports on the transition from theoretical calculi [4, 40, 46] to full-fledged,
gradually typed object-oriented programming languages, this section focuses on implementa-
tion efforts of gradual type systems and on prior implementations of typed languages with
flexible class composition.

5.1 Gradualtalk

Typed Racket differs from Gradualtalk [3], a gradually typed dialect of Smalltalk, in two
major ways. First, TR implements macro-level gradual typing using higher-order contracts as
the enforcement mechanism at module boundaries. Meanwhile, Gradualtalk uses the micro-
level approach pioneered by Siek and Taha [39], meaning that Gradualtalk programmers can
freely omit type annotations. When they do, Gradualtalk injects the value into the Dyn type
and downcasts it from there later.

Second, Gradualtalk does not require row polymorphism because Smalltalk projects rarely
use dynamic inheritance with mixins or similar features. Classes are declared statically. In
contrast, TR necessarily places more emphasis on structural types and row polymorphism to
support the numerous dynamic uses of inheritance in Racket.

Due to the differences in the fundamentals, Typed Racket and Gradualtalk’s evaluations
are necessarily dissimilar. The Gradualtalk evaluation consists of porting an impressive
corpus of nearly 19k lines, with the largest typed component consisting of over 9k lines. These
Gradualtalk components make significant use of the Dyn type, which we conjecture makes
porting large numbers of lines easier than in Typed Racket, likely trading type precision.
More precisely, for every difficult-to-type phrase, a programmer can use Dyn and avoid the
hard work of developing a precise type; conversely, replacing uses of Dyn may trigger non-local
program changes. Qualitatively, the difference in type precision manifests itself at run-time.
With Dyn types, the dynamic portions may be deeply intertwined with typed portions and
thus many more code paths may emit a coercion failure.

In addition, the flavor of ported components differs. Gradualtalk’s evaluation includes
the Kernel project, which contains the core classes of Smalltalk. Racket’s use of classes in the
core is limited to those few places where extensibility or GUI hierarchies are needed. Our
case studies therefore focus on GUI programs or those, such as Markdown or DB, which are
built for extensibility.

Concerning performance, the Gradualtalk evaluation does not consider the porting process
as a whole. Allende et al. [4] do evaluate the performance of several cast insertion strategies
using microbenchmarks.

A. Takikawa et al. 1019

5.2 Reticulated Python
Like Gradualtalk, Reticulated Python [52] (henceforth Reticulated) implements micro-level
gradual typing with Dyn types. In an attempt to overcome performance problems, Reticulated
implements three styles of cast semantics with different design tradeoffs. The guarded
semantics is most similar to Typed Racket’s use of proxy objects to implement higher-order
casts. Unlike the latter, Reticulated uses “threesomes” to avoid repeated proxying. TR does
not use “threesomes” because Racket’s underlying contract language is more expressive than
Reticulated’s cast language. Furthermore, the runtime support for contracts (i.e., chaperones)
enforces more stringent restrictions than Reticulated’s proxies. Like TR, the Reticulated
evaluation found that object identity posed a challenge for porting programs in the guarded
semantics. The monotonic semantics [38] avoids proxying while maintaining blame, at the
cost of potential extra errors when interacting with untyped code, but has not yet been fully
evaluated in Reticulated.

For recursive type aliases, Reticulated uses a fixpoint computation over its class declar-
ations to determine the recursive object types to substitute into class bodies [52, §2.1.3].
Meanwhile, TR’s define-type allows the encoding of general mutual recursion between any
type declarations.

Reticulated’s mostly qualitative evaluation does not analyze performance concerns.

5.3 Thorn
Instead of gradually layering typed reasoning on an untyped language, a designer may also
choose to embed design elements of untyped languages in a statically-typed language. Notably,
the Thorn language takes this approach to support flexible object-oriented programming via
like types [7, 55]. The uses of a variable annotated with a like type are statically checked,
but at run-time any value may flow into such variables. While Thorn’s design goals include
providing the “flexibility of dynamic languages,” its design explicitly leaves out the “most
dynamic features” such as dynamic class composition [55]. In contrast, we aim TR specifically
at augmenting existing code bases, and thus it necessarily supports the dynamic features
that are in use.

In addition, the goals of Typed Racket and Thorn differ in their treatment of blame and
when run-time errors may occur. In TR, most run-time checks occur at module boundaries
and thus most mismatches are signaled when a module is imported. Thus, if an untyped object
imported with a type is missing any specified methods, the contract system immediately
blames the untyped module. Thorn, on the other hand, checks method presence only when
the object flows into an expression in which the method is used. Thus, a tradeoff is made
between flexibility and immediate checking of specifications. Furthermore, Thorn provides
no equivalent of blame tracking, trading precision of debugging information for performance.

5.4 Typescript and Hack
Industrial designers of programming languages have started to adopt ideas from the gradual
typing research community. In particular, both Typescript and Hack allow programmers
to add types to programs in their respective base languages, JavaScript and PHP. These
efforts, like Typed Racket, focus on supporting the idioms in the underlying languages such
as traits—an alternative to mixins that emphasize horizontal composition—or prototypes.
They make no effort, however, to put the interoperation of typed and untyped code on a
sound footing.

ECOOP’15

1020 Towards Practical Gradual Typing

Recently, Rastogi et al. [32] proposed Safe TypeScript, which enables safe interoperation
for TypeScript. Their approach differs from Typed Racket in using run-time type information
for casts whereas TR erases all types after compiling to contracts. Their performance
evaluation measures the performance overhead of casts on several Octane benchmarks in
two modes, with and without type annotations. Superficially, this is similar to testing TR
in both the fully untyped (bottom) and fully typed (top) modes. However, they are not
directly comparable because Safe TypeScript incurs a heavy (up to 72x) overhead with no
type annotations while untyped Racket code does not incur any overhead until it interacts
with a typed module.

5.5 Soft and Strong Type Systems for Dynamic Languages

Type systems that accommodate reasoning for untyped programs have been proposed for
many languages. Early work includes soft typing for Scheme [9, 13, 31, 54], polymorphic
type inference for Scheme [24] based on the dynamic typing [23] formalism, the Strongtalk
project [8] for statically-typed Smalltalk with mixins, and Marlow and Wadler [28]’s work on
a type system for Erlang. These early proposals do not support interoperation as defined by
gradual typing. In soft-typing, run-time checks are inserted where the type system cannot
reason with the given rules. The checks come without blame. Strongtalk provides an idiomatic
type system for Smalltalk, but offers only “downward compatibility” [8] (i.e., Strongtalk
code elaborates to valid Smalltalk). The elaboration is not sound for interoperation with
Smalltalk in the sense of gradual typing. Several ideas used in Strongtalk, e.g., “brands” and
“protocols”, are relevant for future extensions to Typed Racket such as nominal typing and
more concise types.

More recently, several designs in this space use a variety of techniques such as type
inference, dependent types, and refinement types to support idioms in dynamically-typed
programs. DRuby [20] uses type inference to discover types errors in Ruby programs
and inserts run-time checks if the programmer supplies type annotations. Dependent
JavaScript [10] supports JavaScript idioms found in real world programs through the use
of dependent types with a refinement logic, off-loading some of the reasoning to an SMT
solver. While these systems are not gradually-typed, their techniques will be helpful for
future improvements to gradual typing of objects.

5.6 Types for Mixins and First-class Classes

Our work is inspired by a long line of research on semantics and type systems for mixins
and objects. The literature on mixins has focused on class-based languages, many inspired
by Java or Smalltalk. In the object world, classes are encoded as syntactic sugar as in the
σ-calculus [1] or ML-ART [34].

Many models of mixins or first-class classes have been proposed for Java-like languages:
Flatt et al. [17]’s MixinJava, Ancona et al. [6]’s Jam, McDirmid et al. [30]’s Jiazzi, Allen et
al. [2]’s MixGen, Kamina and Tamai [27]’s McJava, and Servetto and Zucca [37]’s MetaFJig.
Other designs instead provide traits [35, 42], which emphasize non-linear composition using
rich operations on trait members. OCaml’s addition of first-class modules [19] enables a kind
of run-time class composition as well. These designs all provide flexible class composition,
but typically do not provide the ability to compose classes at run-time.

A. Takikawa et al. 1021

6 Lessons Learned and Future Work

This paper explains what it takes to turn a theoretical calculus of gradual typing into a
full-fledged object-oriented language that respects pre-existing constraints, especially dynamic
class composition idioms. The key insights are the theoretical and practical design principles
that are applicable across the board. In addition, the paper introduces a novel performance
evaluation framework for gradual typing. While the performance results are restricted to the
formative part of our design work, they have confirmed a long-held belief among researchers
in the community; no other gradual typing project has reported anything comparable. The
current implementation of TR owes its shape to negative results from this evaluation.

Our work suggests two kinds of future efforts. First, we need to scale up the formative
performance evaluation to a summative one that uses a variety of programs. We also intend
to use the framework on a different gradually typed language, e.g., Reticulated Python, that
takes a micro-level approach to gradual typing. Doing so will confirm that this approach is
useful across the board. Second, the performance framework also suggests that programmers
need tailored performance-measuring tools that help them find a path from slow-performing
configurations to better ones. For Typed Racket, we intend to investigate the use of profiling
techniques [43] that pinpoint the most expensive boundaries so that programmers can
eliminate those first.

Acknowledgments The authors wish to thank Leif Andersen, Ben Greenman, and Vincent
St-Amour for their comments on early drafts and for discussions about the research itself.
We also thank the anonymous reviewers for their feedback.

The work was partially supported by a DARPA grant at Northeastern and Utah, an NSA
grant at Indiana, and several NSF grants at all four sites.

References

1 M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2 E. Allen, J. Bannet, and R. Cartwright. A First-class Approach to Genericity. In Proc.

OOPSLA, pp. 96–114, 2003.

3 E. Allende, O. Callaú, J. Fabry, É. Tanter, and M. Denker. Gradual typing for Small-
talk. Science of Computer Programming, 2013.

4 E. Allende, J. Fabry, and É. Tanter. Cast Insertion Strategies for Gradually-Typed
Objects. In Proc. DLS, pp. 27–36, 2013.

5 J. An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic Inference of Static Types
for Ruby. In Proc. POPL, pp. 459–472, 2011.

6 D. Ancona, G. Lagorio, and E. Zucca. Jam - A Smooth Extension of Java with Mixins.
In Proc. ESOP, pp. 154–178, 2000.

7 B. Bloom, J. Field, N. Nystrom, J. Östlund, G. Richards, R. Strniša, J. Vitek, and
T. Wrigstad. Thorn: Robust, Concurrent, Extensible Scripting on the JVM. In Proc.
OOPSLA, pp. 117–136, 2009.

8 G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a Production
Environment. In Proc. OOPSLA, pp. 215–230, 1993.

9 R. Cartwright and M. Fagan. Soft Typing. In Proc. PLDI, pp. 278–292, 1991.
10 R. Chugh, D. Herman, and R. Jhala. Dependent Types for JavaScript. In Proc.

OOPSLA, pp. 587–606, 2012.

ECOOP’15

1022 Towards Practical Gradual Typing

11 R. L. Constable and N. P. Mendler. Recursive Definitions in Type Theory. Cornell
University, TR 85-659, 1985.

12 M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. A Functional I/O System
(or Fun for Freshman Kids). In Proc. ICFP, pp. 47–58, 2009.

13 C. Flanagan, M. Flatt, S. Krishnamurthi, S. Weirich, and M. Felleisen. Catching bugs
in the web of program invariants. In Proc. PLDI, pp. 23–32, 1996.

14 M. Flatt, E. Barzilay, and R. B. Findler. Scribble: Closing the Book on Ad Hoc
Documentation Tools. In Proc. ICFP, pp. 109–120, 2009.

15 M. Flatt, R. B. Findler, S. Krishnamurthi, and M. Felleisen. Programming Languages
as Operating Systems (or Revenge of the Son of the Lisp Machine). In Proc. ICFP,
pp. 138–147, 1999.

16 M. Flatt, R. B. Findler, and M. Felleisen. Scheme with Classes, Mixins, and Traits. In
Proc. APLAS, pp. 270–289, 2006.

17 M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and Mixins. In Proc. POPL, pp.
171–183, 1998.

18 M. Flatt and PLT. Reference: Racket. PLT Inc., PLT-TR-2010-1, 2010. http:

//racket-lang.org/tr1/

19 A. Frisch and J. Garrique. First-class Modules and Composable Signatures in Objective
Caml 3.12. In Proc. ML Workshop, 2010.

20 M. Furr, J. An, J. S. Foster, and M. Hicks. Static Type Inference for Ruby. In Proc.
SAC, pp. 1859–1866, 2009.

21 M. Greenberg. Space-Efficient Manifest Contracts. In Proc. POPL, pp. 181–194, 2015.

22 S. Hanenberg, S. Kleinschmager, R. Robbes, É. Tanter, and A. Stefik. An Empirical
Study on the Impact of Static Typing on Software Maintainability. Empirical Software
Engineering, pp. 1–48, 2013.

23 F. Henglein. Dynamic Typing: Syntax and Proof Theory. Science of Computer Pro-
gramming 22(3), pp. 197–230, 1994.

24 F. Henglein and J. Rehof. Safe Polymorphic Type Inference for a Dynamically Typed
Language: Translating Scheme to ML. In Proc. FPCA, pp. 192–203, 1995.

25 D. Herman, A. Tomb, and C. Flanagan. Space-efficient Gradual Typing. HOSC 23(2),
pp. 167–189, 2010.

26 L. Ina and A. Igarashi. Gradual Typing for Generics. In Proc. OOPSLA, pp. 609–624,
2011.

27 T. Kamina and T. Tamai. McJava – A Design and Implementation of Java with Mixin-
Types. In Proc. APLAS, pp. 398–414, 2004.

28 S. Marlow and P. Wadler. A Practical Subtyping System for Erlang. In Proc. ICFP,
pp. 136–149, 1997.

29 J. Matthews and R. B. Findler. Operational Semantics for Multi-Language Programs.
TOPLAS 31(3), pp. 12:1–12:44, 2009.

30 S. McDirmid, M. Flatt, and W. C. Hsleh. Jiazzi: New-Age Components for Old-
Fashioned Java. In Proc. OOPSLA, pp. 211–222, 2001.

31 P. Meunier, R. B. Findler, and M. Felleisen. Modular Set-Based Analysis from Con-
tracts. In Proc. POPL, pp. 218–231, 2006.

32 A. Rastogi, N. Swamy, C. Fournet, G. Bierman, and P. Vekris. Safe & Efficient Gradual
Typing for TypeScript. In Proc. POPL, pp. 167–180, 2015.

33 B. M. Ren, J. Toman, T. S. Strickland, and J. S. Foster. The Ruby Type Checker. In
Proc. SAC, pp. 1565–1572, 2013.

http://racket-lang.org/tr1/
http://racket-lang.org/tr1/

A. Takikawa et al. 1023

34 D. Rémy. Programming Objects with ML-ART an Extension to ML with Abstract
and Record Types. In Proc. TACS, pp. 321–346, 1994.

35 N. Schärli, S. Ducasse, O. Nierstrasz, and A. P. Black. Traits: Composable Units of
Behaviour. In Proc. ECOOP, pp. 248–274, 2003.

36 M. Scriven. The Methodology of Evaluation. Perspectives of Curriculum Evaluation.
Rand McNally, 1967.

37 M. Servetto and E. Zucca. MetaFJig: a Meta-circular Composition Language for Java-
like Classes. In Proc. OOPSLA, pp. 464–483, 2010.

38 J. Siek, M. M. Vitousek, M. Cimmini, S. Tobin-Hochstadt, and R. Garcia. Monotonic
References for Efficient Gradual Typing. In Proc. ESOP, pp. 432–456, 2015.

39 J. G. Siek and W. Taha. Gradual Typing for Functional Languages. In Proc. SFP,
2006.

40 J. G. Siek and W. Taha. Gradual Typing for Objects. In Proc. ECOOP, pp. 2–27,
2007.

41 J. G. Siek and P. Wadler. Threesomes, with and without blame. In Proc. POPL, pp.
365–376, 2010.

42 C. Smith and S. Drossopoulou. Chai: Traits for Java-Like Languages. In Proc. ECOOP,
pp. 453–478, 2005.

43 V. St-Amour, L. Andersen, and M. Felleisen. Feature-specific profiling. In Proc. CC,
pp. 49–68, 2015.

44 T. S. Strickland and M. Felleisen. Contracts for First-Class Classes. In Proc. DLS, pp.
97–112, 2010.

45 T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt. Chaperones and
Impersonators: Run-time Support for Reasonable Interposition. In Proc. OOPSLA,
pp. 943–962, 2012.

46 A. Takikawa, T. S. Strickland, C. Dimoulas, S. Tobin-Hochstadt, and M. Felleisen.
Gradual Typing for First-Class Classes. In Proc. OOPSLA, pp. 793–810, 2012.

47 S. Tobin-Hochstadt. Typed Scheme: From Scripts to Programs. Ph.D. dissertation,
Northeastern University, 2010.

48 S. Tobin-Hochstadt and M. Felleisen. Interlanguage Migration: from Scripts to Pro-
grams. In Proc. DLS, pp. 964–974, 2006.

49 S. Tobin-Hochstadt and M. Felleisen. The Design and Implementation of Typed
Scheme. In Proc. POPL, pp. 395–406, 2008.

50 S. Tobin-Hochstadt, V. St-Amour, R. Culpepper, M. Flatt, and M. Felleisen. Lan-
guages as Libraries. In Proc. PLDI, pp. 132–141, 2011.

51 Typescript Language Specification. Microsoft, Version 0.9.1, 2013.
52 M. M. Vitousek, A. Kent, J. G. Siek, and J. Baker. Design and Evaluation of Gradual

Typing for Python. In Proc. DLS, pp. 45–56, 2014.
53 R. Wolff, R. Garcia, É. Tanter, and J. Aldritch. Gradual Typestate. In Proc. ECOOP,

pp. 459–483, 2011.
54 A. K. Wright and R. Cartwright. A Practical Soft Type System for Scheme. TOPLAS

19(1), pp. 87–152, 1997.
55 T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating Typed

and Untyped Code in a Scripting Language. In Proc. POPL, pp. 377–388, 2010.

ECOOP’15

	1 Gradual Typing for Classes
	2 The Design Space
	2.1 By Principle
	2.2 By Example
	2.3 From Types to Contracts: An Implementation Challenge
	2.4 Limitations

	3 Effectiveness Evaluation
	3.1 Cases
	3.2 The Process
	3.3 Quantitative Results
	3.4 Qualitative Results
	3.5 Problems and Fixes
	3.6 Discussion

	4 Performance Evaluation
	4.1 Methodology
	4.2 Results and Preliminary Interpretation
	4.3 Problems and Fixes
	4.4 Threats to Validity

	5 Related Work
	5.1 Gradualtalk
	5.2 Reticulated Python
	5.3 Thorn
	5.4 Typescript and Hack
	5.5 Soft and Strong Type Systems for Dynamic Languages
	5.6 Types for Mixins and First-class Classes

	6 Lessons Learned and Future Work

