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Abstract

Non-local control transfer and exception handling have

a long tradition in higher-order programming languages

such as Common Lisp, Scheme and ML. However, each

language stops short of providing a full and comple-

mentary approach — control handling is provided only

if the corresponding control operator is first-order. In

this work, we describe handlers in a higher-order con-

trol setting. We invoke our earlier theoretical result that

all denotational models of control languages invariably

include capabilities that handle control. These capa-

bilities, when incorporated into the language, form an

elegant and powerful higher-order generalization of the

first-order exception-handling mechanism.

1 Introduction

Control manipulation in applicative programming lan-

guages comes in two flavors. First-order control op-

erators allow computations to abort to a dynamicidly

enclosing control context, e.g., Common Lisp’s [22, 23]

throw and ML’s [8, 16] raise. They are invariably

accompanied by forms that delimit and handle the

aborted value, e.g., cat ch in Common Lisp and handle

in ML. In contrast, htgher-order operators such as call-

with-current-continuation in Scheme [26, 27] and ML [3]

allow unrestricted transfers of control without regard to

dynamic scope.

In pre-Common Lisp [15], the operators error iand

errorset, intended to respectively signal and handle

errors, work equally well for exits. The form errorset

simply returns the value of its subexpression if the latter

has no calls to error. If the subexpression does generate

a call to error — whether due to a miscornputation

or an explicit call to error — there is a non-local exit
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or abort to errorset. Using lists or other records to

pack the error return value and placing a dispatching

wrapper around errorset provides a rudimentary but

effective form of control handling.

We next have the catch and throw pair of Com-

mon Lisp, where non-local exits are caused (“thrown” )

by throw and delimited (“caught”) by catch. These

operators are tagged, i.e., a tagged throw can only be

caught by a catch with an identical tag. In other words,

a throw can pick its destination, and not restrict itself

to the closest catch. (In contrast, error and errorset

saddle the user with the chore of writing special dis-

patching routines to distinguish between different exit

destinations.) Because of the explicit throw operator,

there is no reliance on errors for obtaining jumps. In

fact, it is possible to view error as a specially tagged

throw, and errorset as its corresponding catch. ML’s

exception-handling system, where raise causes a first-

order jump and handle delimits it, matches this view.

In contrast to the first-order operators described

above, a higher-order control operator such as Scheme’s

and ML’s call-with- current- continuationl can transfer

control to arbitrary points in the program, not just to

dynamically enclosing contexts. Like its historical fore-

runners J [14] and escape [18], call/cc provides the user

with a representation of the current control context: the

‘(rest of the program” or the “continuation”. Invoking

this continuation at any point in the program causes the

program’s current context to be replaced by the contin-

uation’s context. This ability to substitute the current

program context by a previously stored snapshot of a

program context is simple and powerful. It allows a

wide range of programming paradigms [9, 10, 11, 12]

not possible with catch and throw.

However, there is no analog to delimiting or han-

dling a control action, as with errorset, or to distin-
guishing between different varieties of control actions,

as with catch. Methods of handling and distinguish-

ing control actions are left to user programs. Typically,

1Abbreviated call/cc in Scheme and Catrcc in ML.
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the user stores the context where a continuation should

be handled as yet another call/cc-continuation, so that

control can be transferred to it after the jump to the

first continuation has accomplished its purpose. In the

presence of several continuations with their respective

quasi-handlers, keeping track of the various jump-off

points and avoiding clashes between them requires so-

phisticated bookkeeping strategies [4, 11]. It is there-

fore useful to explore options that tackle this problem

wtthout sacrificing the programming power of higher-

order control.

Here we show that the historical dualit y of first-order

throwing and handling is useful even for higher-order

control. In earlier work [20, 21], we showed that all con-

ventional models for non-local control include a control-

handling capability. In other words, if the relationship

between the model meanings and the observable behav-

ior of language terms is to match, the language, like the

model, must include handlers. In light of this theo-

retical result, efforts to “constrain” tail/cc are simply

attempts to simulate a handler in a handler-less lan-

guage. Such attempts are not only complicated but

also ultimately unsatisfactory, since the original opera-

tor has to be disabled in the process. A control handler

in the language cleanly solves these issues. Indeed, it

enriches higher-order control, opening the way to novel

and elegant control paradigms.

Section 2 introduces the higher-order control opera-

tors run and fcontrol in a Scheme setting, with simple

illustrations. Sections 3 and 4 describe two familiar

but larger examples where control handlers prove use-

ful. Section 5 summarizes the results.

2 Manipulating control using handlers

A control operator such as cal!/cc that captures contin-

uations is a control reafier: it retjies the continuation

of the program and provides this to the user. However,

a closer look shows that call/cc combines two actions:

not only does it capture the current continuation, it also

invokes its argument procedure on this continuation.

In other words, the handling of the continuation takes

place at the identical site as the creation of the continu-

ation, in contrast to errorset/ error and catch/t brow.

Control-handling constructs in traditional Lisp de-

limit the context that can be erased by their control

operators. Extrapolating from the relationship between

errorset and error or catch and throw, a control de-

limiter for call/cc would control the extent of the con-

text captured by call/cc or erased by its continuations.

This operator, proposed by Felleisen [7], is called the

“prompt”, since it annotates its subexpression as an

independent program, in so far as control actions are

concerned, much like the prompt sign in a read-eval-

print loop. The procedural variant of the prompt is

called run, to borrow a term used for an operator that

runs programs [25]. The prompt and run are equiv-

alent: either can be seen as syntactic sugar for the

other. Together with higher-order control reifiers like

call/cc, the prompt supports powerful programming id-

ioms [6, 19]. It has several successors specially suited

to various practical settings, e.g., spawn [13], reset [2],

and splitter [17]. However, none of these constructs

bandies control objects — the corresponding control

reifier continues to double as handler.

In this work, we continue the process of extrapola-

tion identified above by adding control-handling capa-

bilities to the delimiter. In other words, we shift the site

of continuation handling from the control reifier to the

control delimiter. This drastically changes the aspect of

both delimiter and reifier. The new control-capturing

operator is a stripped down version of call/cc — it needs

no procedural argument to “receive” its continuation,

since the delimiter takes care of control handling — and

is therefore given a new name: fcontrol. The new delim-

iter takes two sub expressions: (1) a computation that

runs as a control-independent program, and (2) a pro-

cedure that will handle any control actions performed

by the first subexpression.z

There is one notable difference between the current

system and the historical errorset that it resembles:

It is a much more versatile control mechanism — the

continuations manipulated are higher-order, and not

just aborts. The control system is identical to the

one suggested by a different, theoretical route, viz.,

the control-handling prompts that we showed to be im-

plicitly present in all the traditional denotational mod-

els [20, 21].

2.1 Run and fcontroi

The control delimiter is called run. It takes two ar-

guments, a thunk3 and a binary procedure called the

handler:

(run (thunk) (handjer))

The procedure run calls the thunk as an control-

independent program. If the thunk returns normally,

the call to run returns the result of the thunk. If, on the

other hand, there is a control action inside the thunk,

the handler is invoked on the objects produced by the

control action.

The prompt, ‘ZO, is a convenient synt attic variant4

of run:

2Bruce Duba first suggested the “prompt with a handler”.

3 I.e., a procedure of zero arguments.

4The symbol YO is chosen for its similarity to an operating sys-

t em prompt. Lisp’s own prompt sign is usually >; unfortunately,

that symbol is taken.
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(% exp handler) ❑ (run (lambda () ezp) handler)

A control action is caused by invoking the control

reifer fcontrol on a single argument:

(fcontrol (object))

This sends a signal to the dynamically nearest surround-

ing run, much like the first-order throw to catch. The

important difference is that the signal contains bclth

the argument object and the retjied context or the con-

tinuation. Run processes this signal by invoking the

handler on these two values. Since we want run to be

the sole arbiter of control handling, the continuatic)ns

produced by fcontrol are “functional”. I.e., fcontroi-

continuations, unlike call/cc-continuations, will not au-

tomatically erase existing context when invoked.

2.2 Simple exits

As a simple illustration, a prompt with a handler that

ignores the continuation provides an abort, i.e., the

common paradigm for procedure and loop exits. The

prompt marks the entry point; an fcontrol-application

within the prompt’s first subexpression exits to the en-

try point with an aborted value. E.g., the following

procedure for multiplying the elements of a list exits

immediately on encountering a zero element:

(define product

(lambda (s)

(% (let loop ([s s])

(if (null? s) 1

(let ([a (car s)])

(if (= a O) (fcontrol O)

(* a (loop (cdr s)))))))

(lambda (r k) r))))

2.3 Tree-mat thing

A canonical example of the use of continuations is to

find if two trees have the same frz’nge5. The purely

functional approach flattens both trees and checks if

the results match. However, this would traverse the

trees once completely to flatten them, and then again

till it finds non-matching elements. Furthermore, even

the best flattening operations require conses equal to

the total number of leaves.

The Scheme solution enlists both tail/cc and assignm-

ent to avoid needless consing. Each tree is mappedl to

a generator, a procedure with internal state that suc-

cessively produces the leaves of the tree:

51n our example ((1 . 2) . 3) and (1 . (2 . 3)) are considered

to have the same fringe, as also ((1 2) 3), (1 (2 3)) and ((:1 2)

(3)) — the empty list (), wherever it occurs in the tree, does not

contribute any leaves.

(define make-generator

(lambda (tree)

(letrec

([cailer ‘*]

[generate-leaves

(lambda ()

(let ioop ([tree tree])

(cond

[(pair? tree)

(loop (car tree)) (loop (cdr tree))]

[(nuil? tree) ‘skip]

[else

(call/cc

(lambda (rest-of-tree)

(set! generate-leaves

(lambda () (rest-of-tree ‘*)))

(caller tree)))]))

(caller ‘()))])

(lambda ()

(call/cc

(lambda (k)

(set! caiier k) (generate-ieaves) ))))))

The generator returns the empty list (which cannot be

a leaf) when all the leaves have been accounted for. A

simple loop alternately calls each generator, matches

the leaves thus obtained, and stops immediately upon

finding a mismatch:

(define same-fringe?

(lambda (treel treel?)

(let ([genl (make-generator treel)]

[gen~ (make-generator tree2)])

(let loop ()

(let ([leafl (genl)] [leaf2 (gen2)])

(if (eqv? leafl Ieafi?)

(if (null? leafl ) #t (ioop))

#f))))))

The generator procedure uses call/cc to keep track of

two continuations: (1) the continuation of each call to

the generator so the result can be returned to it, and

(2) the continuation marking each break in the traversal

of the tree, so that the next call to the generator can

resume where the previous call left off. Assignment is

used to store both continuations in the internal state of

the generator.

The crucial continuation is (2), the rest of the com-

putation in the generator. The continuation (1) merely

handles the interface with the generator. In the call/cc

solution, each cent inuation represents a different in-

stance of the entire program context. In fact, con-

tinuation (1) is used to remember that point in the

continuation (2) where control needs to be transferred

back to the caller. In the presence of the continuation-

delimiting handler, continuation (1) need not be cap-
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tured at all, and furthermore, continuation (2) need

only be the partial continuation within the generator.

As a side benefit, the entire bookkeeping using assign-

ment can be wholly avoided.

We now present the Scheme solution that uses

prompt and fcontrol rather than call/cc and set!. Here

too, the program checks the leaves alternately, using

generators that successively throw leaves:

(define make-frznge

(lambda (tree)

(lambda (any)

(let loop

(cond

(fcontrol

([tree tree])

[(pair? tree)

(ioop (car tree)) (loop (cdr tree))]

[(nuii? tree) ‘*]

[else (fcontroi ~ree)]))

‘()))))

A loop catches leaves alternately from each fringe, and

compares them: a mismatch immediately stops the pro-

cess:

(define same-fringe ?

(lambda (treel tree2)

(let loop (~ringel (rnake-frtnge treel )]

(jiwige2 (make-fringe tree2)])

(% (frtngel ‘*)

(lambda (leafl rest-of-fringel )

(% (fr2nge2 ‘*)

(lambda (ieaf2 res&of-fringe2)

(if (egv? leafl leaf2)

(if (nuli? leafl ) #t

(loop rest-o f-fringel

rest-of-frmge2))

#f))))))))

Each time the rest of a fringe is probed, a handler is used

to collect a leaf (or the empty list signaling end of fringe)

and the remaining fringe computation. If the leaves

from the two fringes match, more leaves are ordered.

If the leaves are different, the rest of the fringes are

ignored, and the predicate returns false.

2.4 Tagged run and fcontrol

To avoid interference between control actions arising

from logically different uses of run/fcontroi, we should

identify matching pairs of these control operators. In an

earlier approach, we suggested a hierarchically ordered

set of delimiters [19]. For prompts with handlers, it is

natural to continue our extrapolation from Lisp’s catch

and throw, giving tagged versions of run and fcontrol,

invoked respectively as:

(run-fagged (tag) (thunkj (handier))

and

(fcontrol-tagged (tag) (object))

One tagging protocol — others are possible — is

to have an fcontrol tagged X jump to the dynami-

cally closest prompt tagged X. Not only are interven-

ing prompts of other tags ignored, but the continuation

thrown to the X-prompt will be the complete continu-

ation extending from the X-prompt to the X- fcontrol-

application. Different tags govern different logical uses

of run/fcontrol without fear of interference. Further-

more, since a tag is any object, we can choose unforge-

able tag values and hide their use within a textual region

using lexical hiding.

We can define the tagged versions using the raw

primitives and a strategy whereby fcontrol-tagged uses

fcontrol to send a structure consisting of both its tag

and its thrown value. However, it is preferable to avoid

the data-structure overhead and provide the tagged op-

erators as primitives. We shall henceforth usurp the

name run and fcontrol for the tagged operators. The

previous untagged uses can be considered as having ei-

ther a default or catch-all tag, say false.

3 Nestable engines

Our first larger example involving intensive control ma-

nipulation is the engine. An engine [4, 10] is an ab-

straction of computation subject to timed preemption.

It forms a tractable building block for realizing a variety

of communicating concurrent processes.

An engine’s underlying computation is a thunk that

can be run as a preemptable process. The engine is ap-

plied to three arguments: (1) a number of time units

or tacks, (2) a success procedure, and (3) a failure

procedure. If the engine computation finishes within

the allotted time, the success procedure is applied to

the result of the computation and the remaining ticks;

otherwise, the failure procedure is applied to a thunk

that represents the rest of the interrupted computation.

This thunk, when called, resumes the interrupted engine

comput ation.6

Haynes and Friedman [10] distinguish two varieties

of engines: flat (untestable) and nestable. Flat engines

cannot run other engines, but as the authors say, this re-

striction “considerably simplifies the implementation of

engines”, where the implementation uses Scheme-style

continuations.

The more general nestable engines, or nesters, can

be called at arbitrary sites, but are more difficult to

implement in Scheme. An engine that invokes ( ‘(nests”)

GTraditionally, the value supplied to the jai(tire procedure is

a new engine representing the remaining computation of the old

engine — rather than just its underlying thunk. Our version is no

less general, and further allows enhancements that directly access

the engine’s underlying thunk.
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another engine is called its parent. Nesters require some

user-specified notion of fatrness governing the way time

is spent among the nested invocations.7 For instance,

the nestable variety described here lets each engine use

ticks only from the amount allotted to its ancestors.

Otherwise, an engine could “cheat” by performing its

work through its offspring.

The call/cc implementation of flat engines involves

capture of continuations at both the starting (or resum-

ing) and returning points of an engine. Extending it to

allow nestable engines entails more than adding code

for tick management, since the continuations to be cap-

tured while transferring control across the generations

of engines need involved bookkeeping [4].

We show here an implementation of nestable engines

using control handlers. There is a clean separation be-

tween the segment for transferring control and the seg-

ment for managing time units.s Indeed, modifying just

the time management strategy yields different kinds (of

fairness, including flat engines.

3.1 The clock

The implementation presupposes a global clock or hn-

terruptable timer that consumes ticks while a program

executes. The following describes the type of clock we

shall use: it may be defined using either natively pro-

vided alarms or through syntactic extensions [4] that

simulate tick consumption. The internal state of the

clock contains:

1. the number of remaining ticks; and

2. an interrupt handler to be invoked when the clock

runs out of ticks.

The user can perform the following clock operations:

1. (clock ‘set-handler (h)) sets the interrupt handler

tO (h);

2. (clock ‘set (n)) sets the ticks for countdown to (n);

and

3. (clock ‘stop) stops the clock (without setting off tlhe

interrupt handler), returning the remaining ticks.

The number of ticks ranges over the natural num-

bers and an atom called infi nity.g A clock with an in-

finite number of ticks cannot run out of time, i.e., it

7Indeed, the flat engine could be considered a variant of the

nester where fairness means the prohibition of children!

8 Given a module-based Scheme, the code can be written as an
engine module that abstracts over a fairness module.

9Some Scheme dialects provide an atom for an infinitely large
number, on which the numerical procedures produce the expected
results. In other dialects, any non-numerical atom may be chosen,
with the procedures rnin, — and = redefined (in the lexical sco,pe
of the engine definition) to admit infinity as a possible argument.

is quiescent or “already stopped”. Stopping an already

stopped clock returns infinity. Setting the clock’s ticks

to infinity stops the clock, i.e., ( ciock ‘stop) is shorthand

for (clock ‘set infinity).

The clock’s handler is set to throw an interrupt sig-

nal, say ‘interrupt, to an engine prompt:

(cJock ‘set-handler

(lambda () (fcontrol ‘engine ‘interrupt)))

3.2 The engine core code

The procedure make-engine takes a thunk and produces

an engine, a procedure of three arguments: ticks, suc-

cess and failure.

Assume for the moment that the tick management is

accomplished by code segments named (ticks-preiude)

and (tacks-postlude). The variable true-ticks — intro-

duced in (tacks-prelude) — shows the actual number of

ticks given to the current engine. This may be less than

the argument ticks, owing to fairness considerations.

When invoked, the engine runs its thunk as an in-

dependent piece of computation, in so far as control

is concerned. We therefore depict the engine compu-

tation as the engine’s thunk invoked within a prompt

tagged ‘engine. The computation uses the flag engine-

succeeded? to record whether the engine succeeded, and

if so, the variable ticks-lefl denotes the ticks to spare.

In our first outline, the prompt surrounds code that in-

cludes both the initial setting of the clock to the allotted

ticks, and the stopping of the clock if the thunk returns

successfully. If the engine fails — because of a clock

interrupt — the handler returns a thunk representing

the rest of the engine. (If the handler was invoked for

some reason other than an interrupt, we simply let it

pass on the value.)

After the postlude timer code (ticks-postiude) —

which may modify ticks-iefi — either the success or fail-

ure action is taken, depending on the result of running

the engine thunk:

(define make-engine;; *** first outline ***

(lambda (thunk)

(lambda (ticks success failure)

(ticks-prelude)

(let* ([engine-succeeded? #fl

[ticks-iefi O]

[result;; . . . (1)

(% ‘engine

(begin (ciock ‘set true-tzcks)

(let ([result (thunk)])

(set ! ticks-iefi (ciock ‘stop))

;; . . . (II)

(set ! engzne-succeeded? #t)

result))
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(lambda (r k)

(if (eq? r ‘interrupt)

(lambda () (k #f)) r)))])

(ticks-postlude)

;; . . . (III)

(cond [engine-succeeded?

(success result ticks-lefl)]

[else (faiture result)])))))

When the prompt returns, the variable resu!t con-

tains either the rest of the failed engine or a success-

ful result, and the flag engine-succeeded? tells which

of these is the case. Unfortunately, the code gives in-

correct failed engines: the continuation denoting the

interrupted engine includes the actions for setting the

flag engine-succeeded? and stopping the clock. This

will yield spurious results when the engine is resumed,

whether as a plain thunk or as a fresh engine.

To avoid this, we use two prompts. The outer

prompt encloses all the computation as before, includ-

ing the thunk and the clock and flag operations. The

new inner prompt surrounds only the setting of the

clock and the call to the engine’s thunk. The inner

handler reacts to interrupts by throwing the rest of the

engine to the outer prompt, thereby avoiding including

the flag and clock operations in the thrown thunk. The

outer handler disables interrupts that occur after the

inner prompt has exited — this is done by resuming

the interrupted computation:

*** first modification, for (I) above ***!)>
(let* (.. .

[result

(% ‘engine

(let ([resuit

(% ‘engine

(begin (ciock ‘set true-ticks)

(thunk))

(lambda (r k)

(if (eq? r ‘interrupt)

(~cont~oi ‘engine

(lambda () (k #f)))

r)))])

(set! tz’cks-lefi (ciock ‘stop))

;; . . . (II)

(set! engine-succeeded? #t)
result)

(lambda (r k)

(if (eg? r ‘interrupt)

(k #f) r)))])

. . . )

A successful engine that finishes with no ticks to spare

and suffers an interrupt between the two prompts could

stop the clock twice. To avoid the second stop from

setting the number of ticks left to infinity, the latter

value must be coerced to zero:

. . .
1)) *** second modification, for (II) above ***

(set! tzcks-lefl (zmfinity+O (clock ‘stop))) . . .

where mfindy+O is the function (lambda (n) (if (= n

infinity) O n)).

The engine currently run may be a child engine, in

which case care is needed when invoking the faziure op-

erations. If the child has no ticks left, the parent may

resume with the ~aihtre action on the rest of the child.

If the child does have some ticks left, the child’s fail-

ure was not because the ticks supplied by the user were

insufficient, but because the fairness strategy curtailed

its ticks. In the latter case, the parent must resume the

child when the parent runs again:

. . . *** third modification, for (III) above ***))>

(cond [engme-sticceeded? (success resuit ttcks-lefi)]

[(= tzcks-lefl O) (~ailure resuit)]

[else ((make-engine result)

ticks-lefi success fazlure)]) .

Engines can be forced to stop immediately, either

with a success value or as a failure. For a successful

exit, use fcontrol tagged ‘engine to transfer control and

a success value to the engine prompt:

(define engine-return

(lambda (v) (fcontro~ ‘engine v)))

To block an engine, i.e., compel it to fail, use fcontrol

to force an interrupt:

(define engine-block

(lambda () (fcontrol ‘engine ‘interrupt)))

3.3 The code for managing ticks

A flat engine needs very little tick management. The

variable true-ticks, introduced in (ticks-prelude), is set

to exactly the ticks argument supplied to the engine,

since there are no parent engines. Some error-checking

to ensure that there is no engine already running may

be added:

*** (tacks-prelude)for flat engines ***
~1~

(if (not (= (ciock ‘stop) infinity))

(error ‘engine “Trying to nest engines!”))

(let ([true-ticks ticks])

. . . )

The (ticks-postlude) for flat engines is empty.

For nestable engines, both the prelude and postlude

codes are more elaborate. The algorithm first stops the

currently active parent engine, if any, before running

the new child engine. This yields the ticks left for the

parent — infinity if there is no parent engine. For fair

nesting, the child cannot be run beyond the parent’s

remaining ticks, regardless of the ticks allotted to the
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child in the program. Thus the child should be run

for a number of ticks, true-tzcks, that is the minimum

of the parent’s remaining ticks and the child’s speciiied

ticks. The variable chzld-ttcks-lefi is that part of the

child’s ticks not accounted for by true-ticks, and should

be remembered should the child be continued at sc,me

later time. Further, the time taken by the child is also

counted against the parent — thus, parent-ticks-le}t is

the parent’s ticks less the child’s true ticks.

*** (ticks-P~e/~de) for nestable engines ***,,,
(let ([parent-ticks (clock ‘stop)]

[true-ticks (mtn parent-ticks tzcks)]

[parent-tzcks-lefi

(- parent-ttcks true-ttcks)]

[chdd-tzcks-tefl (- ticks tr-ue-tzcks)])

. . . )

In the postlude, both the parent’s and the child’s re-

maining ticks are updated to include ttcks-lefl, a non-

zero number if the child finished successfully before

true-tacks ran out. The clock is reset to parent-t~cks-

lefi, thereby restarting the parent engine computation:

... *** (tzcks-Post/ude) for nestable engines ***)1)

(set! parent-ticks-left (+ parent-tacks-left tzcks-lefi))

(set! ticks-lefi (+ ch~ld-ticks-lefl ticks-lefi))

(clock ‘set parent-ticks-lefl)

. . .

4 Backtracking through handling

Control handling provides an accessible approach to

Prolog-style backtracking [1, 24]. Backtracking sol[ves

a problem or goal by trying to solve its subgoals. If the

goal is a simple or atomzc goal, it is solved by matching

it with statements or facts in a database. A goal that

is solved is said to succeed.

Given a query goal that is a conjunction of subgoals,

the backtracker checks if each subgoal succeeds. If the

query is a disjunction, the backtracker checks if at least

one of the subgoals succeeds, keeping track of the rest

of the subgoals with a backtrack point. Should a sub-

goal fail, the backtracker goes back to the dynamically

closest backtrack point to try the next subgoal in that

disjunction. If all such retries fail, the query as a whole

fails.

Implementing backtracking in Scheme provides an

apt use of continuations. While “purely functional”

solutions with goals returning boolean values are pos-

sible, such methods require that goals explicitly call
success and failure procedures to allow resumption of

subgoals at backtrack points. In contrast, Scheme
approaches [5, 9] aim for more concise and readable

code using tail/cc-continuations to identify and jump

to backtrack points. Control handlers continue this tra-

dition by simply using prompts to mark subgoals.

4.1 Unification and logic variables

An atomic goal is simply a predicate on terms, where

terms are structured objects built from logic variables,

numbers, lists and other datatypes. An atomic goal

is solved by unifying the term structures composing the

goal against facts in the database. (The unification pro-

cess itself is a predicate: thus, the unification of two

terms is an example of an atomic goal. ) In this treat-

ment, since our purpose is to study the backtracking

capabilities provided by control handlers, we will not

go into the details of implementing logic variables and

unification in Scheme (refer [5, 9]).

4.2 Goals

In this treatment, a goal is a Scheme expression that

throws (instead of just returning) the boolean jalse if it

fails and a true value if it succeeds. In addition, in the

latter case, the continuation of the throw represents a

backtrack point if the goal is to be retried for an alter-

nate solution. Thus, the “fail” goal is simply (~controi

‘goal #f). The “true” goal is not (~controi ‘goal #t) but

(begin (~contro~ ‘goal #t) (~control ‘goal #f)), since it

should fail when retried.

A goal is evaluated by running it in a prompt: the

handler handles the thrown continuation depending on

whether the goal succeeded or failed. The thrown con-

tinuation is exactly the rest of the computation of the

goal, in other words a representation of the backtrack

point in the goal.

A user query is evaluated like any other goal, viz.,

inside a prompt: if it succeeds, its logic variables can

be examined to see how the query was solved.

4.3 Disjunction and conjunction of goals

We now define10 disjunctions (or!) and conjunctions

(and!) as syntactic extensions that take an arbitrary

sequence of goals as subexpressions. First, the disjunc-

tion:

(or! g...)=

(% ‘goal

(begin

(% ‘goal g
(ret h

(lambda (r k)

(if T (begin

10The s~ntax rec helps define recursive functions: ( rec f Z) ❑

(let (~ ‘*]) (set! j z) f).
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(fconhol ‘goal #t)

(% ‘goal (k ‘*) h))))))

(jcontrol ‘goal #f))

(ret h

(lambda (r k)

(if r (begin

(fconiroi ‘goal #t)

(% ‘goal (k ‘*) h))

(~control ‘goal #f)))))

Each subgoal g is tried successively in a separate

prompt. If g fails, its successor is tried, and so on. If,

on the other hand, g succeeds, its handler sends a signal

of success to the caller of the disjunctive goal. However,

g‘s handler notes that the disjunction should backtrack

at g‘s own backtrack point before trying g‘s successors.

If all the subgoals fail, the disjunction itself fails. This

is accomplished by throwing false after trying all the

goals.

Conjunctions follow a related outline:

(and!) E

(begin (fcontrol ‘goal #t) (~control ‘goal #f))

(and! gg2 . ..)-

(% ‘goal g

(ret h

(lambda (r k)

(if r (% ‘goal (and! g2 . ..)

(ret h2

(lambda (r2 k2)

(if r2 (begin

(fcontroi ‘goal #t)

(% ‘goal (k2 ‘*) h2)))

(% ‘goal (k ‘*) h))))

(fcontro/ ‘goal #f)))))

The first clause of the definition of and! shows that a

vacuous conjunction is synonymous with a true goal. If

subgoals are present, all of them should succeed for the

conjunction to succeed. Each subgoal decides whether

the subgoals following it should be tried or not. If a

subgoal g succeeds, its handier tries the conjunction of

the remaining goals, g2, etc., but after noting that if

these fail, g‘s own backtrack point should be retried. If
g fails, its handler should signal overall failure, without

trying g‘s successors.

4.4 The cut

The above implements “pure” Prolog. Often, either for

efficiency or a procedural style, we need to prune the

backtracking possibilities: Prolog’s method is the cut

(“!”). The cut is a goal that succeeds but has the side-

effect of committing all the goal choices made from a

certain “cut entry” point to the point of the cut. In

Prolog, the cut entry is always the immediately enclos-

ing disjunction, but we can relax this restriction here.

The syntax or! ! stands for disjunctions with a cut entry

point.

In our implementation, we simply add a handler

tagged ‘cut at the cut entry point. The cut itself is a

goal that succeeds at first, but on backtracking, jumps

to the cut entry point with a failure signal.

(or!! 9)=
(let ([cut (lambda ()

(fcontrol ‘goal #t) (fconfrol ‘cut ‘*))])

(% ‘cut (or! g . ..)

(lambda (r k)

(jconirol ‘goal #f))))

5 Conclusion

We have described a versatile control mechanism for

programming languages that manipulate higher-order

control. Control handling has been traditionally suc-

cessful in first-order control arenas. When extrapolated

appropriately to languages with higher-order control, it

is an important programming tool, affording clean and

easy solutions for a wide range of control tasks. Thus,

this work bolsters our conclusion from studying denota-

tional models that control handling is an indispensable

addition to any programming language with control op-

erators.
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