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Abstract

The literature on programming languages contains an abundance of in-

formal claims on the relative expressive power of programming languages,

but there is no framework for formalizing such statements nor for deriving

interesting consequences. As a �rst step in this direction, we develop a

formal notion of expressiveness and investigate its properties. To validate

the theory, we analyze some widely held beliefs about the expressive power

of several extensions of functional languages. Based on these results, we

believe that our system correctly captures many of the informal ideas on

expressiveness, and that it constitutes a foundation for further research

in this direction.

1 Comparing Programming Languages

The literature on programming languages contains an abundance of informal claims

on the expressive power of programming languages. Arguments in these contexts

typically assert the expressibility or non-expressibility of programming constructs

relative to a language. Unfortunately, programming language theory does not provide

a formal framework for specifying and verifying such statements. Comparing the set of

computable functions that a language can represent is useless because the languages in

question are usually universal; other measures do not exist. The lack of a comparison

relation makes it impossible to draw any �rm conclusions from expressiveness claims

or to use them for an objective decision about the use of a programming language.

�
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Landin [24] was the �rst to propose the development of a formal framework for

comparing programming languages. He studied the relationship between program-

ming languages and constructs, and began to classify some as \essential" and some as

\syntactic sugar." A typical example of an inessential construct in Landin's sense is

the let-expression in a functional language with �rst-class procedures. It declares and

initializes a new, lexically-scoped variable before evaluating an expression. Whether

it is present or absent is inconsequential for a programmer since

let x be v in e is expressible as apply (procedure (x) e) v:

Similarly, few programmers would consider it a loss if a goto-free, Algol-like language

had a while but not a repeat construct. After all,

repeat s until e is expressible as s; while :e do s:

Others, most notably Reynolds [36, 37] and Steele and Sussman [40], followed

Landin's example. They introduced the informal notion of the core of a language

and studied the expressiveness of imperative extensions of higher-order functional

languages. Steele and Sussman [40:29] summarized the crucial idea behind this kind

of classi�cation of language features with the remark that a number of program-

ming constructs are expressible in an applicative notation based on syntactically

local, structure- and behavior-preserving translations, but that some, notably con-

trol statements and assignments, involve complex reformulations of large fractions of

programs.

In the realm of logic, Kleene anticipated the idea of expressible or eliminable syn-

tactic symbols in his study of formal systems [21:x74]. Troelstra [42:I.2] resumed this

work and introduced further re�nements and extensions. Roughly, the additional

symbols of a conservative extension of a core logic are eliminable if there is a trans-

lation from the extended logic to its core that satis�es a number of conditions. Two

of these are important for our purposes. First, the mapping is the identity on the

formulae of the core language and is homomorphic in the logical connectors. Second,

if a formula is provable in the extension then so is its translation in the core. Clearly,

these two conditions imply that this translation preserves the structure of formulae

and removes symbols on a local basis.

By adapting the ideas about the relationship among formal systems to program-

ming languages, we obtain a relation that determines whether a programming lan-

guage can express a programming construct. More precisely, given two universal pro-

gramming languages that only di�er by a set of programming constructs, fc

1

; . . . ; c

n

g,

the relation holds if the additional constructs make the larger language more expres-

sive than the smaller one. Here \more expressive" means that the translation of a

program with occurrences of one of the constructs c

i

to the smaller language requires

a global reorganization of the entire program. A �rst analysis shows that this measure

of expressiveness supports many informal judgements in the literature. Moreover, we

discover that an increase in expressive power comes at the expense of less \intuitive"
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semantic equivalence relations. We also discuss some attempts at generalizing the

measure to a comparison relation for arbitrary programming languages.

The next section brie
y reviews the logical notions of eliminable symbols and def-

initional extensions. In subsequent sections, we propose a formal model of express-

ibility and expressiveness along the lines of logical expressiveness, investigate some of

its properties, and analyze the expressive powers of several extensions of functional

languages. More speci�cally, we introduce our formal framework of expressiveness

based on the notion of expressibility. We demonstrate the abstract concepts by prov-

ing some sample theorems about �-calculus-based languages as well as a number of

meta-theorems. Next, we study the expressiveness of an idealized version of Scheme

and verify the informal expressiveness philosophy behind its design [41]. Following

this analysis, we brie
y speculate how the use of a more expressive language increases

programming convenience. Finally, we compare our ideas to related work and address

some open questions.

2 Eliminable Symbols and De�nitional Extensions

The theory of comparing formal systems is a peripheral topic in logical studies and

�nds little or no space in most textbooks. The following short overview summarizes

and adapts Troelstra's [42:I.2] descriptions of Kleene's work [21].

A formal system is a triple of sets: expressions, formulae, and theorems. The

second is a subset of the �rst, the third a subset of the second. Expressions are freely

generated (in the sense of a term algebra) from a number of non-logical and logical

operators, e.g., ^, !, $, etc. The set of formulae is a recursive subset of the set of

expressions and satis�es certain well-formedness criteria. The set of theorems is the

subset of the formulae that the formal system de�nes to be true. If L is a formal

system, then Exp(L) is its set of expressions, Fm(L) the set of formulae, and Thm(L)

the set of theorems; L ` t also means t is a theorem of L.

A conservative extension L of a formal system L

0

is a formal system whose ex-

pressions are a superset of the expressions over L

0

, generated from a richer set of

operators, and whose formulae and theorems restricted to the expressions of L

0

are

the formulae and theorems of L

0

:

Fm(L) \ Exp(L

0

) = Fm(L

0

); Thm(L) \ Exp(L

0

) = Thm(L

0

).

A conservative extension L is a de�nitional extension of L

0

if there is a mapping

' : Exp(L)! Exp(L

0

) that satis�es the following conditions:

F1 '(f) 2 Fm(L

0

) for each f 2 Fm(L);

F2 '(f) = f for all f 2 Fm(L

0

);

F3 ' is homomorphic in all logical operators;
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F4 L ` t if and only if L

0

` '(t); and

F5 L ` t $ '(t).

Kleene referred to those symbols that generate the additional expressions of the ex-

tended formal system as eliminable.

Remark 1 (Weak Expressibility). Kleene's original de�nition contains a weaker

version of Condition 3, namely,

F4

0

if L ` t then L

0

` '(t).

Based on condition F5, it is possible to show that the two de�nitions are equivalent,

assuming the usual axioms for $ [21:x74]. As we shall discuss in several remarks be-

low, this is not the case in the context of programming languages. Instead, condition

F4

0

leads to a di�erent but related notion of language expressiveness.

3 A Formal Theory of Expressiveness

As a �rst step towards a formal theory of expressiveness for programming languages,

we adapt the logical theory of eliminable symbols to the programming language con-

text. We develop the idea of a programming language as a formal system and re-

interpret the concepts of conservative extension and eliminability accordingly. Since

many of the examples in the work of Landin, Reynolds, Steele, and Sussman pre-

serve not only the global structure of the program but also the local structure of the

transformed phrases, we consider a stricter notion of eliminability as a second step.

We refer to this second notion as macro expressibility. It satis�es the additional

constraint that the transformation of eliminated phrases is always compositional. In

the two subsections on the respective topics, we prove theorems about the eliminabil-

ity and non-eliminability of programming constructs and apply them to a simplistic

prototype language based on the �-calculus. Both notions of expressibility suggest

natural comparative measures of the expressive power of programming languages,

which we present in the third subsection.

3.1 Expressibility

Like a formal system, a programming language is a system of subsets of a general

language. More precisely, a programming language is a set of phrases, a subset of

programs, and a semantics that determines some aspects of the behavior of programs.

De�nition 3.1. (Programming Language) A programming language L consists of
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� a set of L-phrases, which is a set of freely generated abstract syntax trees (or

terms), based on a possibly in�nite

1

number of function symbols F;F

1

; . . . with

arities a; a

1

; . . .;

� a set of L-programs, which is a non-empty, recursive subset of the set of phrases;

and

� a semantics, eval

L

, which is a recursively enumerable predicate on the set of

L-programs. If eval

L

holds for a program P , the program terminates.

The function symbols are referred to as programming constructs or programming fa-

cilities.

De�nition 3.1 is an abstraction of the typical speci�cations of many realistic pro-

gramming languages. Most languages have a context-free syntax yet enforce addi-

tional context-sensitive constraints by recursive

2

decision procedures. Examples of

such constraints are scoping

3

and typing rules, which ensure that names only occur

in certain pieces of text and only range over a restricted set of values.

To avoid restrictive assumptions about the set of programming languages, the

de�nition only requires that the semantics observe the termination behavior of pro-

grams. By omitting any references to the characteristics of results, it is possible to

consider programming languages with and without observable data. For program-

ming languages with simple output data, i.e., constants or opaque representations of

procedures, the de�nition is in many cases equivalent to a de�nition that refers to

the observable output of a program. For a consideration of languages with in�nite

output, e.g., through imperative output statements or through potentially in�nite

lists, the de�nition needs some adjustments.

Finally, the above de�nition of a programming language also shows that, in a

certain sense, a programming language is a formal system. The set of phrases cor-

responds to the expressions of a formal system, the set of programs plays the role

of the set of formulae, and the set of terminating programs is the analog of the set

of theorems. In the terminology of universal algebra, the set of expressions is the

universe of a free term algebra [5]; instead of relying on the more typical algebraic

1

We assume that there is enough structure on an in�nite set of constructors for specifying the

decidability of predicates and the recursiveness of translations on the set of phrases. In the following

examples, this is obviously the case.

2

A notable exception is Scheme as de�ned in the standard report [35], which only has a recursively

enumerable set of programs: An expression is a Scheme program if and only if it has the same result

for all possible evaluation orders in its applications. We consider this an unfortunate aberration

rather than an interesting extension of our de�nition.

3

Although most languages impose lexical scoping, De�nition 3.1 only accounts for this fact

through the recursive selection of programs from the set of phrases. An explicit inclusion of the

lexical scoping structure through a Church encoding [7] of the language in a typed lambda calculus

is a feasible and interesting alternative but would probably lead to a slightly di�erent de�nition of

expressibility and expressiveness.
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Phrases

e ::= x j v j (ee) (expressions)

v ::= (�

v

x:e) j (�

n

x:e) (values)

Programs

e is a program if and only if fv(e) = ;

where fv(e) is the set of free variables in e

Semantics

eval

�

(e) holds if and only if e �!

�

v for some v

Evaluation Contexts

E ::= � j ((�

v

x:e)E) j (Ee)

Reduction Steps

E((�

n

x:e)e

0

) �! E(e[x=e

0

]) (�)

E((�

v

x:e)v) �! E(e[x=v]) (�

v

)

where e[x=e

0

] is the capture-free substituion of e

0

for all free x in e

Figure 1: The programming language �

approach of equational restrictions, the de�nition uses arbitrary recursive predicates

for �ltering out the interesting subset of programs. Unlike logic, the programming

language world does not know such ubiquitous constructs as the logical connectors.

Our prototypical example of a programming language is a derivative of the lan-

guage � of the pure �-calculus [3]. Figure 1 summarizes its (concrete) syntax and

semantics. In order to compare the expressiveness of call-by-value and call-by-name

procedures later in this section, we extend � with a new constructor, �

v

, and rename

� to �

n

. More speci�cally, the �-phrases are generated from a set of variables (0-

ary constructors), fx; y; z; . . .g, and two families of unary constructors, one for each

variable x : �

v

x : term �! term (call-by-value abstraction), �

n

x : term �! term

(call-by-name abstraction), and one binary constructor: � : term � term �! term

(juxtaposition). Below, �

v

and �

n

denote the sets of all �-constructors. For readabil-

ity, we use concrete syntax for �-terms and adopt the traditional �-calculus conven-

tions about its use [3].

The constructors �

v

x and �

n

x bind the variable x in their term arguments. The

set of free variables in an expression e, fv(e), is the set of variables that are in e and

are not bound. If all variables in a �-term are bound, the term is closed . The set

of �-programs is the set of closed phrases, i.e., there is only one recursive constraint

that distinguishes programs from arbitrary phrases.
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The operational semantics of � re
ects the semantics of realistic programming

languages like Iswim, ML, and Scheme [34].

4

The speci�cation of the semantics in

Figure 1 follows the style of extensible operational semantics [8, 10], which is easily

adaptable to the imperative extensions of � in the following section. An evaluation is a

sequence of reduction steps on programs according to the normal-order strategy. If the

program is a value (an abstraction), the evaluation stops. Otherwise, the reduction

function (uniquely) decomposes the program into an evaluation context, a term with

a hole (�), and a redex, the contents of the hole. A redex is either an application of a

call-by-name abstraction to an arbitrary expression (�) or an application of a call-by-

value abstraction to a value (�

v

). In either case, the reduction function replaces the

redex, ((�

x

:b)a), by a new version of the procedure body, b[x=a]. Then the evaluation

process starts over again.

Summarizing the standard reduction process as a predicate on programs yields the

operational semantics of �. Some useful examples of phrases are the call-by-name

and call-by-value �xed point operators, which facilitate the recursive de�nition of

functions:

Y

n

= (�

n

f:(�

n

x:f(xx))(�

n

x:f(xx)))

and

Y

v

= (�

v

fx:(�

v

g:gg)(�

v

x:f(�

v

x:(gg)x))x):

Two simple diverging programs are 


n

= Y

n

(�

n

x:x) and 


v

= Y

v

(�

v

xy:xy)(�

v

x:x).

To illustrate the impact of syntactic constraints on programs, we also de�ne �

t

,

a typed variant of �. �

t

has the same set of phrases as � but uses a type checking

algorithm for �ltering out valid programs. A �

t

program is not only closed but is

also typable as either an integer or a higher-order functional on integers according

to the type inference system in Figure 2. It easily follows from Milner's [27] initial

work on polymorphism that typability is a recursive predicate for �

t

. The semantics

of �

t

-programs is the same as that of their untyped counterparts.

�

t

is a typical example of a monomorphic language: all occurrences of a �-bound

variable have the same type. As a consequnce, the typing constraints of �

t

exclude

typical �-programs like �x:(xx) or phrases like (xx) in programs. Indeed, the Y

operator for de�ning recursive functions must be typed explicitly because it would

not pass the other type rules.

Based on the interpretation of a programming language as a formal system, it is

easy to de�ne the notion of a conservative programming language extension.

De�nition 3.2. (Conservative Extension & Restriction) A programming language

L is a conservative extension of a language L

0

if

� the constructors of L

0

are a subset of the constructors of L with the di�erence

being fF

1

; . . . ;F

n

; . . .g, which are not constructors of L

0

;

4

As usual, this operational semantics has only remote connections to the equational theory of

the �-calculus.
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Programs

e is a program if and only if it is closed and ; ` e : �

Types

� ::= � j � �! �

Type Assertion

A:Variables �!� Types (�nite functions)

where A[x=� ](x) = � A[x=� ](y) = A(y) (functional update)

Type Inference

A ` x : � if A(x) = �

A[x=� ] ` e : �

0

A ` �

v;n

x:e : � �! �

0

A ` e : �

0

�! � ; A ` e

0

: �

0

A ` (ee

0

) : �

A ` Y

n

: (� �! �) �! � A ` Y

v

: ((� �! �

0

) �! (� �! �

0

)) �! (� �! �

0

)

Figure 2: �

t

� the set of L

0

-phrases is the full subset of L-phrases that do not contain any

constructs in fF

1

; . . . ;F

n

; . . .g;

� the set of L

0

-programs is the full subset of L-programs that do not contain any

constructs in fF

1

; . . . ;F

n

; . . .g; and

� the semantics of L

0

, eval

L

0

, is a restriction of L's semantics, i.e., for all L

0

-

programs P , eval

L

0

(P ) holds if and only if eval

L

(P ) holds.

Conversely, L

0

is a conservative restriction of L.

To emphasize the constructors on which the restriction and extension di�er, we

write L

0

= L n fF

1

; . . . ;F

n

; . . .g and L = L

0

+ fF

1

; . . . ;F

n

; . . .g. We also use the

notation to denote the natural restriction and extension that result from subtracting

or adding facilities to the syntax (provided the respective languages and, in the latter

case, a semantic speci�cation exist).

In our running example, the restricted language �

n

is � without �

v

-abstractions,

�

v

is � without call-by-name abstractions:

�

n

= � n �

v

; �

v

= � n �

n

:

A restriction of the above evaluation process to �

v

- and �

n

-phrases yields a call-by-

value and a call-by-name semantics, respectively. The corresponding sublanguages of

�

t

are de�ned similarly.
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To enrich the set of examples, we add a let construct to �. There is one binary

let constructor for each variable x : let

x

: term � term �! term. Like �x, let

x

binds

its variable, namely in the second subexpression. The concrete syntax for let

x

(e; e

0

)

is

(let x be e in e

0

):

The semantics of �+ flet

x

g, or �+ let for short, requires an additional clause in the

speci�cation of evaluation contexts

E ::= . . . j (let x be E in e)

and an additional clause for the reduction function:

E(let x be v in e) �! E(e[x=v]): (let

v

)

Otherwise the de�nition of the semantic predicate in Figure 1 stays the same. It is

trivial to check that � + let is a conservative extension of �.

The extension of �

t

with let additionally requires a type inference rule for the new

construct. For greater 
exibility, the new rule only requires that, at each occurrence

of the abstracted variable, the named subexpression is typable with some type:

A ` e : � ; A ` e[x=e

0

] : �

0

A ` (let x be e in e

0

) : �

0

�

t

v

+ let is polymorphic in the spirit of ML [27, 28, 43:43, 44]. Unlike �-bound vari-

ables, let-bound variables can have several types. For example, x in (let x be (�y:y) in (xx))

conceptually assumes two di�erent types: (� �! �) �! (� �! �) and (� �! �), which

makes the expression a legal program despite the self-application of a variable. Again,

it is easy to see that the extension is conservative with respect to �

t

.

For the re-interpretation of the logical notion of eliminability, we need to be more


exible. The non-existence of ubiquitous programming language features in the sense

of logical connectors raises the question whether the mapping from the extended lan-

guage to the core should be homomorphic and, if so, on which set of features. At

this point, we recall the above-mentioned desire that our translations be structure-

preserving, and the idea that the homomorphic character of a translation naturally

corresponds to this property. To preserve the structure of programs as much as pos-

sible, we require that the translations be homomorphic in all programming facilities

of the core language.

De�nition 3.3. (Eliminability; Expressible Programming Constructs) Let L be a

programming language and let fF

1

; . . . ;F

n

; . . .g be a subset of its constructors such

that L

0

= LnfF

1

; . . . ;F

n

; . . .g is a conservative restriction. The programming facilities

F

1

; . . . ;F

n

; . . . are eliminable if there is a recursive mapping ' from L-phrases to L

0

-

phrases that satis�es the following conditions:
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E1 '(e) is an L

0

-program for all L-programs e;

E2 '(F(e

1

; . . . ; e

a

)) = F('(e

1

); . . . ; '(e

a

)) for all facilities F of L

0

, i.e., ' is homo-

morphic in all constructs of L

0

; and

E3 eval

L

(e) holds if and only if eval

L

0

('(e)) holds for all L-programs e.

We also say that L

0

can express the facilities F

1

; . . . ;F

n

; . . . with respect to L. We

omit the quali�cation if the language universe is clear from the context. By abuse of

notation, we write ' : L �! L

0

.

Condition E2 in this de�nition implies that the mapping ' is the identity on the

language L

0

. It corresponds to conditions F2 and F3 of the logical notion of elim-

inability. According to the above interpretation of a programming language as a

formal system, an interpretation of condition F4 in Section 2 requires that the trans-

lation of a terminating program in the extended language is a terminating program

in the restricted language. This is precisely the contents of Condition E3. Finally,

the last condition of the logical notion of eliminability, F5, has no counterpart in

a programming language context because of the lack of a ubiquitous programming

construct.

Remark 2 (Weak Expressibility). By using an adaptation of Kleene's original

Condition F4

0

(see Remark 1 in the previous section) instead of the third condition in

the preceding de�nition, we get a weak notion of expressibility. The revised condition

takes on the following shape:

F3

0

. if eval

L

(e) holds then eval

L

0

('(e)) holds,

The intuition behind this de�nition is that the translated phrase has at least as many

capabilities as the original one. The terminology re
ects our belief that any di�er-

ences in behavior should be noted as a failure of complete expressibility. Moreover,

the terminology is also consistent with the fact that expressibility implies weak ex-

pressibility.

An alternative understanding of the above de�nition is that the translation maps

phrases constructed from eliminated symbols to observationally indistinguishable

phrases in the smaller language. In other words, replacing the original phrase with

its translation does not a�ect the termination behavior of the surrounding programs.

This relation between two phrases of programming languages is widely studied in

semantics and is known as operational (or observational) equivalence [25, 29, 33, 34].

After developing the formal de�nition of operational equivalence, we can characterize

su�cient conditions for the eliminability of programming constructs.

A formal de�nition of the operational equivalence relation relies on the auxiliary

notion of a program context.

10



De�nition 3.4. (Contexts; Program Contexts) An n-ary context overL, C(�

1

; . . . ; �

n

),

is a freely generated tree based on L's constructors and the additional, 0-ary construc-

tors �

1

; . . . ; �

n

, called meta-variables. All subtrees of C(�

1

; . . . ; �

n

) are also n-ary

contexts. If C(�

1

; . . . ; �

n

) is a context and e

1

; . . . ; e

n

are phrases in L, then the in-

stance C(e

1

; . . . ; e

n

) is a phrase in L that is like C(�

1

; . . . ; �

n

) except at occurrences

of �

i

where it contains the phrase e

i

:

� if C(�

1

; . . . ; �

n

) = �

i

then C(e

1

; . . . ; e

n

) = e

i

, and

� if C(�

1

; . . . ; �

n

) = F(C

1

(�

1

; . . . ; �

n

); . . . ; C

a

(�

1

; . . . ; �

n

)) for some F with arity

a then C(e

1

; . . . ; e

n

) = F(C

1

(e

1

; . . . ; e

n

); . . . ; C

a

(e

1

; . . . ; e

n

)).

An L-program context for a phrase e is a unary context, C(�), such that C(e) is

a program.

For �

n

, the context C

0

(�) = (�

n

xy:�)(�

n

x:x)


n

is a program context for all

expressions whose free variables are among x and y.

Since the semantic predicate of a programming language only tests a program

for its termination behavior, our de�nition of operational equivalence compares the

termination behavior of programs.

5

De�nition 3.5. (Operational Equivalence) Let L be a programming language and

let eval

L

be its operational semantics. The L-phrases e

1

and e

2

are operationally

equivalent, e

1

�

=

L

e

2

, if there are contexts that are program contexts for both e

1

and

e

2

, and if for all such contexts, C(�), eval

L

(C(e

1

)) holds if and only if eval

L

(C(e

2

))

holds.

With the above program context C

0

, it is possible, for example, to di�erentiate the

phrases x and y. Since 


n

diverges, C

0

(x) = (�

n

xy:x)(�

n

x:x)


n

terminates whereas

C

0

(y) = (�

n

xy:y)(�

n

x:x)


n

diverges.

Figure 3 contains a sequent calculus of operational equivalence on �

v

+ let, which

is used below in Proposition 3.7; the proof system is similar to Riecke's for a typed

version of �

v

[38]. The calculus proves equations over the language from premisses

(�) that are �nite sets of equations. It is sound but incomplete, i.e., if ; ` e = e

0

then

e

�

=

e

0

but not vice versa.

Remark 3 (Weak Expressibility). A replacement of the \if-and-only-if" con-

dition with a simple \if" condition yields the notion of operational approximation,

which plays the same role for weak expressibility as operational equivalence for ex-

pressibility. More speci�cally, the term e

1

operationally approximates e

2

, e

1

@

�

L

e

2

,

if for all program contexts, C(�), for e

1

and e

2

, eval

L

(C(e

2

)) holds if eval

L

(C(e

1

))

holds. | In conjunction with the above context C

0

, the program context C

1

(�) =

(�

n

yx:�)(�

n

x:x)


n

shows that x and y do not approximate each other.

5

In many cases, our de�nition is equivalent to the more traditional de�nition that compares the

termination behavior of programs and the results, provided they are among a set of observable data.
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� ` (�

v

x:e)v = e[x=v] � ` 
e = 
 � ` e
 = 


� ` e = e

0

� ` �

v

x:e = �

v

x:e

0

x 62 fv(�)

� ` e = e

0

� ` ee

00

= e

0

e

00

� ` e = e

0

� ` e

00

e = e

00

e

0

� ` (let x be v in e) = e[x=v] � ` (let x be 
 in e) = 


� ` e = e

0

� ` (let x be e in e

00

) = (let x be e

0

in e

00

)

x 62 fv(�)

� [ fe = e

0

g ` e = e

0

� [ fe = 
g ` e

1

= e

2

; � [ fe = vg ` e

1

= e

2

for all v

� ` e

1

= e

2

� ` e = e

� ` e = e

0

� ` e

0

= e

� ` e = e

0

; � ` e

0

= e

00

� ` e = e

00

Figure 3: A Calculus for Operational Equivalence on �

v

+ let

We now have everything in place to formalize our above idea about the connection

between eliminable programming constructs and their translations. The following the-

orem shows that, at least to some extent, the elimination of expressible programming

constructs from a program is a local process and keeps the program structure intact.

Theorem 3.6 Let L = L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

. If

' : L �! L

0

is homomorphic in all facilities of L

0

and preserves program-ness, and if

F

i

(e

1

; . . . ; e

a

i

)

�

=

L

'(F

i

(e

1

; . . . ; e

a

i

)) for all F

i

and all L-expressions e

1

; . . . ; e

a

i

, then

L

0

can express the facilities F

1

; . . . ;F

n

; . . ..

Proof. It su�ces to show that condition E3 of De�nition 3.3 holds for '. Assume

that P is an L-program such that eval

L

(P ) holds. By the construction of P , there is

a context C(�

1

; . . . ; �

n

) such that

P = C(p

1

; . . . ; p

n

)

where p

1

, . . . , p

n

are the �nite number of outermost occurrences of phrases constructed

from some facilities in F

1

; . . . ;F

n

; . . .. Thus, C(�

1

; p

2

; . . . ; p

n

) is a program context

for p

1

. It follows from the theorem's assumption that

eval

L

(C(p

1

; . . . ; p

n

)) holds if and only if eval

L

(C('(p

1

); . . . ; p

n

)) holds:

12



Repeating this step n times proves that

eval

L

(C(p

1

; . . . ; p

n

)) holds if and only if eval

L

(C('(p

1

); . . . ; '(p

n

))) holds:

But, since C does not contain any facilities in F

1

; . . . ;F

n

; . . .,

C('(p

1

); . . . ; '(p

n

)) = '(C(p

1

; . . . ; p

n

)) = '(P ):

Moreover, since L conservatively extends L

0

,

eval

L

(P ) holds if and only if eval

L

0

('(P )) holds:

This completes the proof.

Remark 4 (Weak Expressibility). The theorem holds for weak expressibility even

if we replace operational equivalence by operational approximation: If F

i

(e

1

; . . . ; e

a

i

)

@

�

L

'(F

i

(e

1

; . . . ; e

a

i

)), then the F

1

; . . . ;F

n

; . . . are weakly eliminable.

An application of this theorem shows that let is an example of an eliminable con-

struct. For the typed setting, this provides a precise formalization of the folk theorem

that ML-style polymorphism is expressible in a monomorphic language.

6

The two ex-

amples also reveal a striking di�erence between the typed and the untyped language

variant. Whereas the untyped let expression simply abbreviates an application as

illustrated in the introduction, its typed counterpart maps to a version of the let

body in which each occurrence of the abstracted variable is substituted with a copy

of the named expression. The reason for this di�erence is that in the typed case the

translation must not only preserve the semantics but also the typability in order to

preserve program-ness.

Proposition 3.7 The constructor let is eliminable in call-by-value languages.

(i) �

v

can express let with respect to �

v

+ let.

(ii) �

t

v

can express let with respect to �

t

v

+ let.

Proof. (i) Set '(let x be e in e

0

) = (�

v

x:'(e

0

))'(e). To show that the two phrases

are operationally equivalent we proceed by induction on the number of let's in the

subexpression. The base case for e; e

0

in �

v

proceeds as follows. By the homomor-

phism constraint, '(e) = e and '(e

0

) = e

0

. By the laws in Figure 3,

e = 
 ` (let x be e in e

0

) = 
 = (�x:e

0

)e

and, for all values v ,

e = v ` (let x be e in e

0

) = e

0

[x=v] = (�x:e

0

)e;

6

An alternative approach to a formalization of this folk theorem is due to Wand [44].
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and therefore,

(let x be e in e

0

)

�

=

�+let

(�x:e

0

)e:

The induction step proceeds along the same line.

(ii) Set '(let x be e in e

0

) = ((�

v

d:'(e

0

)[x='(e)])'(e)) where d does not occur

free in e or e

0

. To verify that this translation maps programs to programs, it su�ces

to prove that the translation preserves the implicit type assignment. We proceed by

induction on the number of let-expressions in the program and show that, given a

�xed set of type assumptions, '(e) has the same type as e. Assume e and e

0

are

let-free, and consider the typing of an instance of let:

A ` (let x be e in e

0

) : �

0

for some A and �

0

. By the setup of the inference system, A ` e : � for some � and

A ` e

0

[x=e] : �

0

. Since, by assumption, '(e) = e and '(e

0

) = e

0

, A ` '(e) : � and

A ` '(e

0

)[x='(e)] : �

0

. The rest follows easily: A ` (�

v

d:'(e)[x='(e

0

)]) : � �! �

0

and

also

A ` (�

v

d:'(e)[x='(e

0

)])'(e) : �

0

:

The induction step requires a lemma that proves '(e)[x='(e

0

)] has the same type as

e[x=e

0

] if '(e) and '(e

0

) have the same type as e and e

0

.

The proof that ' preserves the semantics of typed let-programs follows the same

pattern as part (i). Observe that

e = 
 ` (let x be e in e

0

) = 
 = (�d:e

0

[x=e])
 = (�d:e

0

[x=e])e

and also, for all v ,

e = v ` (let x be e in e

0

) = e

0

[x=v] = (�d:e

0

[x=v])v = (�d:e

0

[x=e])e:

The rest is obvious.

The converse of Theorem 3.6 does not hold. That is, the facilities F

1

; . . . ;F

n

; . . .

may still be expressible in L

0

even though the translation from L to L

0

maps an

eliminable phrase to an observably distinct element. One reason for this is that the

set of programs may not contain an element such that F

i

(e

1

; . . . ; e

a

i

) for some F

i

occurs in a context over the restricted language, in which case it is irrelevant how the

mapping ' translates this phrase. Thus, by imposing an appropriate condition, we

can get a theorem on the non-expressibility of programming constructs.

Theorem 3.8 Let L = L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

.

If for all mappings ' : L �! L

0

that are homomorphic in all facilities of L

0

,

F

i

(e

1

; . . . ; e

a

i

) 6

�

=

L

'(F

i

(e

1

; . . . ; e

a

i

)) for some L-expressions e

1

; . . . ; e

a

i

and F

i

in F

1

; . . . ;F

n

; . . .,

and if there is a context C(�) over L

0

that witnesses this inequality, then L

0

cannot

express the facilities F

1

; . . . ;F

n

; . . ..

14



Proof. Let ' : L �! L

0

be an arbitrary mapping that is homomorphic in all facilities

of L

0

. Suppose '(F

i

(e

1

; . . . ; e

a

i

)) = e and let C(�) be the context over L

0

that observes

the operational di�erence between e and F

i

(e

1

; . . . ; e

a

i

). Since ' is homomorphic over

L

0

,

'(C(F

i

(e

1

; . . . ; e

a

i

))) = C('(F

i

(e

1

; . . . ; e

a

i

))) = C(e):

But, by assumption, eval

L

(C(F

i

(e

1

; . . . ; e

a

i

))) holds while eval

L

(C(e)) and eval

L

0

(C(e))

do not hold (or vice versa). This implies that no mapping that is homomorphic over

L

0

can possibly satisfy condition E3 of De�nition 3.3 if the antecedent of the theorem

holds, and that consequently the programming constructs F

1

; . . . ;F

n

; . . . cannot be

eliminable.

Based on this �rst non-expressibility theorem, we can now prove that call-by-name

� cannot express call-by-value abstractions and vice versa.

Proposition 3.9 � extends both �

v

and �

n

.

(i) �

n

cannot express �

v

with respect to �.

(ii) �

v

cannot express �

n

with respect to �.

Proof.

7

(i) According to the semantics for �

n

, the application of an abstraction

(�

n

y:p) to an argument can only proceed in one of the following three manners:

1. it may uniformly diverge for all arguments: whenever (�

n

y:p)e �!

�

e

0

there is

always an e

00

such that e

0

�! e

00

;

2. it may uniformly converge to a value for all arguments, including 


n

: for all

expressions e there is a value v

e

such that (�

n

y:p)e �!

�

v

e

;

3. it may activate the argument for a �rst time: (�

n

y:p)e �!

�

ee

1

. . . e

k

for some

e

1

; . . . ; e

k

.

The proof of this auxiliary claim is a simple induction on the length of the reduction

sequence. Also, it is easy to check that whenever e �!

�

e

0

then E(e) �!

�

E(e

0

).

Let (�

v

x:e) be an abstraction in � that converges upon application to some val-

ues. More speci�cally, let e and v be in �

n

and assume that for some value u,

(�

v

x:e)v(�

n

x:x) �!

�

u. Then we claim that C(�) = (� v)(�

n

x:x) is the context that

we are looking for in order to apply Theorem 3.8.

Assume that ' : � �! �

n

is a structure-preserving translation. Then '(�

x

v:e) is

or reduces to a value in �

n

. Let �

n

y:p be this value. Since the original abstraction

terminates upon application to some value, the translation of this application must

terminate as well. Therefore �

n

y:p cannot diverge uniformly. On the other hand,

the pre-image, �

v

x:e, also diverges upon application to 


n

, which implies that the

7

Improved by Carolyn Talcott.
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translation cannot converge uniformly. Thus, let e

1

; . . . ; e

k

be the expressions such

that

C('(�

v

x:e)) = '(�

v

x:e)v(�

n

x:x) �!

�

(�

n

y:p)v(�

n

x:x) �!

�

ve

1

. . . e

k

(�

n

x:x):

Setting e = �

n

x:x and v = �

n

x:


n

(which satisfy the original asumptions), it is trivial

to see that this program now diverges. If n = 0 the reduction continues with:

. . . �! (�

n

x:


n

)(�

n

x:x) �! 


n

�! . . . ;

otherwise, it is:

. . . �! (�

n

x:


n

)e

1

. . . e

k

(�

n

x:x) �! 


n

e

2

. . . e

k

(�

n

x:x) �! . . .

That is, whereas C(�

v

x:e) converges to (�

n

x:x), C('(�

v

x:e)) diverges. By the

preceding theorem, we have shown our claim.

(ii) This part is much simpler. Take C(�) = (�


v

), e = (�

n

x:(�

n

x:x)) and

assume that ' is a structure-preserving translation. Clearly, eval(C(�

n

x:(�

n

x:x)))

holds, but, C('((�

n

x:(�

n

x:x)))) diverges. Hence, a structure-preserving translation

cannot preserve operational equivalence, which proves the claim.

Remark 5 (Weak Expressibility). By Remark 4, �

n

can weakly express �

v

because �

v

x:e

@

�

�

�

n

x:e.

An immediate corollary of Theorem 3.8 is that if for some phrase with an elim-

inable symbol there is no operationally indistinguishable expression in the restricted

language, then the restricted language is less expressive than the full language. We

use this corollary instead of the full theorem in Section 4.2.

Corollary 3.10 Let L = L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

. If

for some F

i

(e

1

; . . . ; e

a

i

) there is a program context C over L

0

but there is no e in L

0

such that F

i

(e

1

; . . . ; e

a

i

)

�

=

L

e, then L

0

cannot express the facilities F

1

; . . . ;F

n

; . . .

3.2 Macro Expressibility

Although the de�nition of eliminable programming construct is a satisfactory �rst step

towards a better understanding of the formal structure of programming languages, it

does not completely account for the idealized notion of \syntactic sugar" of Landin

and others [24, 36, 37, 40] as discussed in the introduction. In many cases, the

elimination of \syntactic sugar" constructs not only preserves the global program

structure but also the structure of the subexpressions of phrases built from eliminable

constructs.

Recall the two examples from the introduction:
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1. In a functional language with �rst-class functions, a let expression is simply

an abbreviation of the immediate application of an anonymous procedure to an

argument:

let x be v in e is expressible as apply (procedure (x) e) v:

2. In a goto-free, Algol-like language,

repeat s until e is expressible as s; while :e do s:

In both examples, the translation of a composite phrase is the (�xed) composition

of the translation of its subphrases. More technically, the translation of a phrase

is the evaluation of a term (in the sense of universal algebra [5]) over the restricted

language at the translations of the subphrases. As mentioned above, terms correspond

to contexts in our framework; for clarity, we refer to contexts as syntactic abstractions

8

in relation to the following de�nition and its uses.

De�nition 3.11. (Macro Eliminability; Macro Expressibility) Let L be a program-

ming language and let fF

1

; . . . ;F

n

; . . .g be a subset of its constructors such that

L

0

= L n fF

1

; . . . ;F

n

; . . .g is a conservative restriction. The programming facilities

F

1

; . . . ;F

n

; . . . are macro eliminable if they are eliminable and if the eliminating map-

ping ' from L to L

0

satis�es the following, additional condition:

E4 For each a-ary construct F 2 fF

1

; . . . ;F

n

; . . .g there exists an a-ary syntactic

abstraction, A, over L

0

such that

'(F(e

1

; . . . ; e

a

)) = A('(e

1

); . . . ; '(e

a

)):

We also say that L

0

can macro-express the facilities F

1

; . . . ;F

n

; . . . with respect to L.

Remark 6 (Weak Expressibility). If some facilities are weakly expressible and

satisfy the additional condition, we call them weakly macro-expressible.

Since macro expressibility is a restriction of simple expressibility, Theorem 3.6 on

the eliminability of constructs requires some adaptation.

Theorem 3.12 Let L = L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

.

If ' : L �! L

0

is homomorphic in all facilities of L

0

and preserves program-ness,

and if there is a syntactic abstraction A

i

for each F

i

in F

1

; . . . ;F

n

; . . . such that

F

i

(e

1

; . . . ; e

a

i

)

�

=

L

A

i

('(e

1

); . . . ; '(e

a

i

)) for all L-expressions e

1

; . . . ; e

a

i

, then L

0

can

macro-express the facilities F

1

; . . . ;F

n

; . . ..

8

In Lisp-like languages, syntactic abstractions are realized as macros [22]; logical frameworks

know them as notational abbreviations [17]. The terminology of equational algebraic speci�cations

[16] refers to syntactic abstractions as derived operators.
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Proof. It is easy to see that the additional condition in the antecedent is precisely

what is needed to adapt the proof of Theorem 3.6 to the stronger conclusion.

Moreover, the additional condition E4 permits a simpli�cation of the theorem to

a corollary that no longer makes any reference to the translating map. The corollary

is used in Section 4.

Corollary 3.13 Let L = L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

. If

there is a syntactic abstraction A

i

for each F

i

in F

1

; . . . ;F

n

; . . . so that F

i

(e

1

; . . . ; e

a

i

)

�

=

L

A

i

(e

1

; . . . ; e

a

i

) for all L-expressions e

1

; . . . ; e

a

i

, then L

0

can macro-express the facilities

F

1

; . . . ;F

n

; . . ..

By Proposition 3.7, �

v

can express let. A simple check of the proof reveals that

the translation between the two languages satis�es the antecedent of the corollary,

and that therefore let is also macro-expressible. More importantly, however, the

additional condition E4 in De�nition 3.11 also leads to a stronger meta-theorem on

the non-expressibility of facilities. The new theorem shows that new programming

constructs add to the expressive power of a language if their addition a�ects existing

operational equivalences.

Theorem 3.14 Let L

1

= L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative extension of L

0

.

Let

�

=

0

and

�

=

1

be the operational equivalence relations of L

0

and L

1

, respectively.

(i) If the operational equivalence relation of L

1

restricted to L

0

expressions is not

equal to the operational equivalence relation of L

0

, i.e.,

�

=

0

6=(

�

=

1

jL

0

), then L

0

cannot macro-express the facilities F

1

; . . . ;F

n

; . . ..

9

(ii) The converse of (i) does not hold. That is, there are cases where L

0

cannot

express some facilities F

1

; . . . ;F

n

; . . ., even though the operational equivalence

relation of L

1

restricted to L

0

is identical to the operational equivalence relation

of L

0

, i.e.,

�

=

0

= (

�

=

1

jL

0

).

Proof. Let eval

0

and eval

1

be the respective evaluation predicates for L

0

and L

1

.

(i) A di�erence between the restricted operational equivalence relation of L

1

and

that of L

0

implies that there are two phrases e and e

0

in L

0

and L

1

such that either

e

�

=

0

e

0

and e 6

�

=

1

e

0

or e 6

�

=

0

e

0

and e

�

=

1

e

0

. For the �rst case, let C(�) be a context

over L

1

that can di�erentiate the two phrases e and e

0

. Let us say, without loss of

generality, that

eval

1

holds for C(e) but not for C(e

0

):

Now, assume contrary to the claim in the theorem that L

0

can express the facilities

F

1

; . . . ;F

n

; . . .. Then, there is a mapping ' : L

1

�! L

0

that satis�es conditions E1

9

An extension of an equivalence relation to a larger language is also called conservative if the

restriction to the old syntax yields the original equivalence relation. To avoid confusion, we will not

use this terminology here.
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through E4 of De�nitions 3.3 and 3.11. By conditions E1 and E3, the programs

C(e) and C(e

0

) have counterparts in L

0

, '(C(e)) and '(C(e

0

)), that have the same

termination behavior:

eval

0

('(C(e))) holds because eval

1

(C(e)) holds

and

eval

0

('(C(e

0

))) does not hold because eval

1

(C(e

0

)) does not hold. (y)

By conditions E2 and E4, the programs '(C(e)) and '(C(e

0

)) can only di�er in a

�nite number of occurrences of e and e

0

. In other words, there is a program context

D(�) over L

0

such that '(C(e)) = D(e) and '(C(e

0

)) = D(e

0

): for the proof, see

the Translation Lemma below. Next, from the assumption e

�

=

0

e

0

, it follows that

'(C(e)) = D(e) and '(C(e

0

)) = D(e

0

) have the same termination behavior in L

0

, i.e.,

eval

0

(D(e)) holds if and only if eval

0

(D(e

0

)) holds:

But this contradicts the above fact (y) that '(C(e)) = D(e) converges and '(C(e

0

)) =

D(e

0

) diverges, which concludes the �rst case.

For the second case, assume e 6

�

=

0

e

0

and e

�

=

1

e

0

. This assumption actually implies

that

there are no contexts over L

0

that complete both e and e

0

to programs. (�)

For otherwise, there must be a context C(�) such that eval

0

(C(e)) holds while

eval

0

(C(e

0

)) does not. Since L

1

is a conservative extension of L

0

, eval

1

(C(e)) holds,

eval

1

(C(e

0

)) does not, and therefore contrary to the assumption, e 6

�

=

1

e

0

.

Now again, assume contrary to the claim of the theorem that L

0

can express the

additional facilities in L

1

via an appropriate translation ' : L

1

�! L

0

. Since e and

e

0

are operationally equivalent in L

1

, there must be a context C(�) over L

1

such that

eval

1

(C(e)) and eval

1

(C(e

0

)). By assumption, eval

0

('(C(e))) and eval

0

('(C(e

0

))).

Again by the Translation Lemma, the two translated programs are instances of the

same program context D(�) such that '(C(e)) = D(e) and '(C(e

0

)) = D(e

0

). But

by the above fact (*), such a context cannot exist, and we have thereby arrived at a

contradiction. This concludes the second case of claim (i).

To �nish the proof of claim (i), we must �nally show that a homomorphic function

preserves the structure of a program.

Translation Lemma. Let ' : L

1

�! L

0

be a translation that satis�es Conditions (0)

through (3) in De�nitions 3.3 and 3.11. Let C(�) be a context over L

1

. Then, there

is a context D(�) over L

0

such that '(C(e)) = D(e) and '(C(e

0

)) = D(e

0

).

Proof. The proof is an induction on the structure of C(�). The only interesting

case is the following. Say, C(�) = F(C

1

(�); . . . ; C

a

(�)) for some F in F

1

; . . . ;F

n

; . . ..

Then,

'(F(C

1

(e); . . . ; C

a

(e)) = A('(C

1

(e)); . . . ; '(C

a

(e)))
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and

'(F(C

1

(e

0

); . . . ; C

a

(e

0

)) = A('(C

1

(e

0

)); . . . ; '(C

a

(e

0

)))

for some �xed syntactic abstraction A over L

0

by condition E4. By inductive hy-

pothesis, there are contexts D

i

(�), for 1 � i � a, such that '(C

i

(e)) = D

i

(e) and

'(C

i

(e

0

)) = D

i

(e

0

). But then D(�) = A(D

1

(�); . . . ;D

a

(�)) is the context correspond-

ing to C(�). The other cases are similar but easier.

lemma

The proof of the Translation Lemma �nishes the proof of case (i).

(ii) We only sketch the construction of an example that proves claim (ii). For

another example that is more interesting and �ts more smoothly into this paper, see

Subsection 4.2 on the control structure of Idealized Scheme.

For the base language, take the simply typed �-calculus with a �xed point oper-

ator, whose types are either base types or arrow types. Because of the type system,

it is impossible to de�ne the typical cons, car , and cdr functions for pairs of values

of arbitrary types. Hence this simply-typed language cannot express these functions.

On the other hand, also due to the type system of the language, the new functions

cannot be bound to free variables in phrases of the sublanguage, which implies that

the additional functions on pairs (of distinctly typed components) cannot be used to

distinguish phrases in the simply typed language. It follows that pairing functions and

selectors increase the expressive power without destroying operational equivalences

of the underlying language.

Based on Theorem 3.14, we can show that the sublanguage �

v

is not strong

enough to macro-express call-by-name abstraction, and that �

n

is not strong enough

to macro-express call-by-value abstraction. The proofs utilize the �rst half of the

proof of claim (i).

Proposition 3.15 � extends both �

v

and �

n

.

(i) �

n

cannot macro-express �

v

with respect to �.

(ii) �

v

cannot macro-express �

n

with respect to �.

Proof. The claims are obviously consequences of Proposition 3.9.

(i) A direct proof for the �rst claim is derived from a theorem by Ong [31: Thm. 4.1.1],

10

based on the preceding meta-theorem. Consider the phrases x(�

n

y:x(YK)
y)(YK)

and x(x(YK)
)(YK). The two are equivalent in an adequate model of �

n

[31] and

are therefore operationally equivalent:

x(�

n

y:x(YK)
y)(YK)

�

=

�

n

x(x(YK)
)(YK):

The operational reasoning for a veri�cation of this equivalence is as follows. No matter

which argument the procedure x evaluates �rst, the expression (YK) eventually ap-

pears in the hole of the evaluation context, which leads to an immediate termination

of the program evaluation.

10

Gordon Plotkin pointed out Abramsky's [1] and Ong's [31] work on the lazy �-calculus, which

corrected a mistake in an early draft.
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In the full language �, the above analysis no longer holds: Call-by-value proce-

dures can evaluate and discard the expression (YK) in a way that does not a�ect the

rest of the program. Thus, the context

C(�) = (�

n

x:�)(�

v

x:(�

n

y:y))

can distinguish between the two phrases: C(x(�

n

y:x(YK)
y)(YK)) terminates, but

C(x(x(YK)
)(YK)) diverges. By Theorem 3.14, �

n

cannot express �

v

.

(ii) Consider the expressions �

v

f:f(�

v

x:x)
 and �

v

f:
. In the pure call-by-value

setting, the two are operationally equivalent:

�

v

f:(f(�

v

x:x))


�

=

�

v

�

v

f:
:

Both abstractions are values; upon application to an arbitrary value, both of them

diverge. A formal proof is straightforward, based on the proof rules in Figure 3. In

the extended language �, however, we can di�erentiate the two with the context

C(�) = �(�

v

x:(�

n

y:x)):

The context applies a phrase to a function that returns the value of the �rst argument

after absorbing the second argument without evaluating it. Hence, C(�

v

f:f(�

v

x:x)
)

terminates while C(�

v

f:
) diverges, which proves that the extension of �

v

to � does

not preserve the operational equivalence relation. Again by Theorem 3.14, �

n

is not

expressible.

Remark 7 (Weak Expressibility). Remark 5 and the proof of Proposition 3.15

show that Theorem 3.14 does not carry over to weak expressibility because �

n

can

weakly macro-express �

v

and yet

�

=

�

n

6�

�

=

�

. That is, even in the case of a language

extension that does not preserve the operational equivalence or approximation rela-

tion, the restricted language may already be able to express the new facilities in a

weak sense.

For a second application of Theorem 3.14, we show that the polymorphic let

construct of �

t

v

is not macro-expressible in �

t

. On one hand, this lemma con�rms the

folk knowledge that a polymorphic let adds expressive power to a monomorphically

typed programming language. It does not contradict the above proposition, which

only shows that a polymorphic let is expressible in a monomorphic language. On

the other hand, this lemma provides an example of an interesting facility that is

expressible but not macro-expressible relative to the same language. The proof relies

on the second part of claim (i) in the meta-theorem.

Proposition 3.16 �

t

v

cannot macro-express let with respect to �

t

v

+ let.
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Proof. Consider the expressions ((gx)(ff))) and (�

v

d:((gx)(ff)))(gx). Since both

contain a self-application of the variable f , there is no �

t

v

program context for the

two expressions, and the two programs cannot be operationally equivalent:

((gx)(ff))) 6

�

=

�

t

(�

v

d:((gx)(ff)))(gx)

Still their dynamic behavior is the same. The di�erence between the two programs

is that the second computes the application of g to x twice, throwing away the �rst

result via a vacuous abstraction:

gx = 
 ` (gx)(ff) = 
(ff) = 
 = (�

v

d:((gx)(ff)))
 = (�

v

d:((gx)(ff)))(gx)

and, for all values v ,

gx = v ` (gx)(ff) = v(ff) = (�

v

d:((gx)(ff)))v = (�

v

d:((gx)(ff)))(gx):

Thus, in the extended language, where the variable f can be let-bound in an appro-

priate context, the two program fragments are equivalent:

((gx)(ff))

�

=

�

t

+let

(�

v

d:((gx)(ff)))(gx):

Together with the above inequality, this proves the proposition.

Propositions 3.15 and 3.16 provide several examples of pairs of universal program-

ming languages that we can di�erentiate according to our expressiveness criterion.

With the full language �, it also provides an example of a language that can express

more than �

v

and �

n

. We have come to a point where we can formally distinguish

the expressive power of programming languages.

3.3 Expressiveness

The two notions of expressibility are also simple comparison relations for languages

and their conservative extensions. For a comparison of arbitrary programming lan-

guages, these relations are too weak. One solution is to conceive of our abstract

programming languages as signatures (or types in the sense of universal algebra [5])

for classes of real programming languages. It is then possible to compare languages

by comparing their signatures if one signature happens to be a conservative exten-

sion of the other. Though appealing at �rst glance, this idea only relaxes syntactic

constraints such that the languages under comparion do not have to have the same

syntax.

An alternative solution is to consider a common language universe that is a con-

servative extension of two or more programming languages. Given a common universe

that �xes the meaning of a number of interesting programming constructs, there is

a natural extension of the notion of expressibility to a notion of relative expressive

power. Intuitively, a programming language is less expressive than another if the

latter can express all the facilities the former can express in the language universe.
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De�nition 3.17. ((Macro) Expressiveness) Let L

0

and L

1

be conservative language

restrictions of L. L

1

is at least as (macro-) expressive as L

0

with respect to L if L

1

contains or can (macro-) express a set of L-constructs whenever L

0

contains or can

(macro-) express the additional facilities.

The expressiveness relation is obviously a pre-order on sublanguages in a given

language framework; it is also monotonic in its third argument provided the extension

to the universe is conservative.

Theorem 3.18 Let L

0

, L

1

, L

2

be conservative restrictions of L, and let L be a

conservative restriction of L

0

.

(i) L

0

is less expressive than L

0

with respect to to L.

(ii) If L

0

is less expressive than L

1

with respect to L and L

1

is less expressive than

L

2

with respect to L, then L

0

is less expressive than L

2

with respect to L.

(iii) If L

0

is less expressive than L

1

with respect to L, then L

0

is less expressive than

L

1

with respect to L

0

.

Proof. The proof is an easy calculation, verifying the conditions based on the above

de�nitions.

However, a uniform change to all languages can change expressiveness relations.

Theorem 3.19 Expressiveness relationships are not invariant under uniform exten-

sions of the languages.

Proof. For a simple example, consider �, �

n

, and �

v

, and recall that the two sub-

languages are incomparable by Propositions 3.9 and 3.15. To prove the claim, we

uniformly add a begin construct, (begin e e), that evaluates two expressions in

sequence and then discards the �rst value. The formal speci�cation requires an ex-

tension of the set of evaluation contexts to

E ::= . . . j (begin E e)

and an additional reduction clause:

E(begin v e) �! E(e):

Now, �

n

+fbeging can (macro-) express �

v

x:e as �

n

x:(begin x e), but begin does

not add anything to the power of �

v

: after all (begin e

1

e

2

) is (macro-) expressible

as (�

v

xy:y)e

1

e

2

in �

v

. Thus, in the extended setting �

n

+fbeging is more expressive

than �

v

+ fbeging.

The claim is still valid if the new facility is already in the language universe. Take

the same example and add �

v

xy:y, i.e., Abramsky's [1] convergence tester C for �

n

,

to both sub-languages, which is equivalent to adding begin.
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The example in the preceding theorem formalizes Algol 60's de�nition of call-by-

value as an abbreviation of a call-by-name procedure preceded by an additional block

or statement [30:12]; i.e., it is not the pure call-by-name subset of Algol that can

de�ne call-by-value but an extension thereof that includes a \strict" facility. The

theorem thus shows how dangerous it is to use such informal claims as call-by-name

can or cannot express call-by-value etc. These claims only tend to be true in speci�c

language universes for speci�c conservative language restrictions: they often have no

validity in other contexts!

Syntax

c ::= 0 j 1 j � 1 j 2 j � 2 j . . . (numerals)

f ::= 0? j 1

+

j 1

�

j + j � (numeric functions)

v ::= c j f (constants)

j (lambda (x . . .) e) (abstractions)

e ::= v (values)

j x (variables)

j (e e . . .) (applications)

Semantics

eval(e) holds i� e �!

�

v for some v

Evaluation Contexts

E ::= � j (v . . .E e . . .)

Reduction Steps

E((fv . . .)) �! E(�(f; v; . . .)) if �(f; v; . . .) is de�ned

E(((lambda (x

1

. . .x

n

) e) v

1

. . .v

n

)) �! E(e[x

1

=v

1

; . . . ; x

n

=v

n

])

Constant Interpretation

�(1

+

; n) = n+ 1

�(1

�

; n) = n� 1

�(+; n;m) = n +m

�(�; n;m) = n �m

�(0?; 0) = (lambda (x y) x)

�(0?; n) = (lambda (x y) y)

for n 6= 0

Figure 4: Pure Scheme

4 The Structure of Idealized Scheme

Pure Scheme is a simple functional programming language. It has multi-ary, call-by-

value procedures and algebraic constants. There are basic constants and functional

constants. Following Plotkin, we assume the existence of a partial function (�) from

functional constants and closed values to closed values that speci�es the behavior of
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constants in Pure Scheme and its extensions. Typically, the constants include in-

tegers, characters, booleans, and some appropriate functions; Figure 4 contains the

appropriate de�nition of �. In order to gain a complete understanding of Idealized

Scheme, Pure Scheme only contains integers and a minimal set of functions on inte-

gers, elements that are expressible in a �-calculus-based language like �

v

.

Figure 4 contains the complete speci�cation of Pure Scheme, based on a reduction

semantics in the style of the previous section. Scheme programs satisfy two context-

sensitive de�nitions: They are closed expressions, and they do not contain lambda-

abstractions with repeated parameter names. The predicate eval holds for a program

if the program reduces to an answer, that is, values in the case of Pure Scheme. If eval

does not hold for a program, the program is either in an in�nite loop or the reduction

process is stuck.

11

In Pure Scheme, an evaluation can become stuck because of the

application of a constant symbol to a �-expression, the application of a numeral to

a value, the application of a constant function to a value for which � is unde�ned,

or the application of a lambda-abstraction to the wrong number of arguments. As

before, the reduction rules for Pure Scheme constitute the basis for proof systems for

the operational equivalence relation in the spirit of Figure 3. For brevity, however,

we shall carry out most of the proofs in this section in an informal setting; it should

be clear from the proofs, though, how to formalize the various steps. In the following

subsections,

�

=

ps

denotes the operational equivalence relation on Pure Scheme; other

indexes correspond to extensions of Pure Scheme and should be self-explanatory.

The main characteristic of Idealized Scheme [11, 12, 13] is the extension of the func-

tional core language Pure Scheme with type predicates, local branching constructs,

and imperative facilities:

� branching expressions for the local manipulation of control,

� predicate constants for determining the type of a value,

� control operators for the non-local manipulation of control, and

� assignment statements for the manipulation of state variables.

The extensions re
ect the belief that these constructs increase the expressive power of

the language [40, 41]. In this section, we demonstrate how to formulate these beliefs

in our formal macro-expressiveness framework.

Subsection 1 simultaneously deals with local control and type predicates because

the two sets of constructs are closely related. The second subsection is a study of

two di�erent control operators, one for stopping the execution of a program and

another for handling the general 
ow of control. The third subsection shows how

imperative assignments add expressive power to the core language. Finally, the last

11

Although this is commonpractice in semantic considerations, a more realistic speci�cation would

have to consider the introduction of an error mechanism. However, an error mechanism actually

introduces additional expressive power, which is the reason why we consider it separately.
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subsection addresses the unrelated issue of how Pure Scheme relates to so-called

\lazy" functional languages, or more precisely, to call-by-value languages with call-

by-name data constructors. We thus hope to reconcile Proposition 3.15 on the non-

expressibility of call-by-name abstractions in �

v

and Pure Scheme with the wide-

spread belief that \lazy" data constructions are available in higher-order, by-value

languages.

4.1 Local Control and Dynamic Types

The programming language world knows two types of local branching statements: the

boolean-value based if-construct for distinguishing two values from each other, and

the Lisp-style if-construct for distinguishing one special value from all others. The

semantics of the former relies on the presence of two distinct values: false and true,

or 0 and 1. Assuming an extension of the set of evaluation contexts to

E ::= . . . j (Bif E e e);

the following two additional reduction rules characterize the behavior of truth-value

based Bif:

E(Bif 1 e

t

e

f

) �! E(e

t

) (Bif:true)

E(Bif 0 e

t

e

f

) �! E(e

f

): (Bif:false)

If the test value in a Bif-expression is neither 0 nor 1, the evaluation of the program

is unde�ned, or equivalently, such a Bif-expression is operationally indistinguishable

from a diverging expression. The extension is obviously conservative; we refer to it

as PS(Bif).

Clearly, Pure Scheme can express such a simple Bif.

Proposition 4.1 Pure Scheme can macro-express Bif.

Proof Sketch. The proposition follows from Corollary 3.13 and is basically due to

Landin and Burge [23:115], who realized that vacuous lambda abstractions could be

used to suspend computations. Consider the syntactic abstraction:

(Bif � �

t

�

f

) = ((lambda (t thn els)

(((0? (1

�

t)) thn ((0? t) els (lambda () 
)))))

� (lambda () �

t

) (lambda () �

f

))

It is easy to show that this abstraction is operationally equivalent to Bif. If the

replacement for � is neither 0 nor 1, then both expressions diverge. Otherwise, both

expressions select one of the replacements for �

t

or �

f

and eliminates the other.

The right-hand side accomplishes this by suspending the two expressions in 0-ary

procedures and invoking one of them after the selection has been made.
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Remark 8 (Weak Expressibility). An extension of Pure Scheme with Bif and

two distinct new values, true and false, would not be macro-eliminable. Otherwise '

would have to map true to a term t in Pure Scheme, which implies that the programs

(Bif true 1 2);

and

(Bif t 1 2);

map to the same image, namely

A(t; '(e

1

); '(e

2

))

for some �xed syntactic abstraction A. But it is then impossible that the translation

preserves program behavior because the �rst program terminates and the second one

diverges.

Clearly, Bif is still weakly expressible since the translation will only force more

programs to terminate. In a typed version of Pure Scheme, the problem would disap-

pear. The type system would not admit a program with an ill-typed Bif-expression.

Put di�erently, since a typed version of Pure Scheme admits fewer programs, expres-

siveness propositions are stronger.

The Lisp-style if assumes that there is one distinct value for false, in Lisp usually

called nil, and all other values represent true. With 0 again serving as false, the

reduction rules di�er accordingly from (Bif.true) and (Bif.false):

(Lif v e

t

e

f

) �! e

t

for v 6= 0 (Lif :v)

(Lif 0 e

t

e

f

) �! e

f

: (Lif:nil)

Proposition 4.2 Pure Scheme cannot macro-express Lif.

Proof Sketch. For readability, we carry out the proof in PS(Bif). Since Bif is

macro-expressible by Proposition 4.1, operational equivalences of terms hold in Pure

Scheme after expanding the Bif-expressions.

The proposition is a consequence of Theorem 3.14. The interesting operational

equivalence is based on the following context:

C(�) = (Bif (p (lambda () 
)) (Bif (p 0) 1 �) 
):

In Pure Scheme, the evaluation of (an instance of) this context cannot reach (the

replacement of) �. First, if p is not bound to a procedure, the evaluation process

diverges at the �rst invocation of p on (lambda () 
). Thus assume p is replaced

by a procedure. The rest of the proof proceeds by a case analysis on the following

property of procedures: a procedure of one argument may (1) ignore its argument and

return a constant result, or (2) apply a constant function symbol to its argument, or
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(3) use its argument in the procedure position of an application. For the evaluation

of C(�) to reach �, the procedure must return two di�erent results: 1 on (lambda

() 
), and 0 on 0. Let us then consider the other two alternatives. On one hand, if

p applies a functional constant in Pure Scheme to its argument, then the application

(p (lambda () 
)) diverges. On the other, when p uses its argument as a procedure,

the evaluation again diverges in the �rst test position. In short, either the evaluation

of C diverges at the �rst test position, or the procedure p produces a result that is

independent of its argument. Both cases imply that an evaluation cannot reduce a

redex in the replacement of �.

It follows from the above that it is inconsequential what � represents. Therefore,

C(1)

�

=

ps

C(
). In the larger setting of PS(Lif), however, the preceding analysis does

not hold. A context over PS(Lif), could bind the variable p to the procedure

(lambda (x) (Lif x 0 1));

which can distinguish the arguments 0 and (lambda () 
) in the correct manner:

C(1) 6

�

=

Lif

C(
).

As an alternative to the addition of Lif, dynamically typed languages generally

include type predicates. For extending Pure Scheme with a predicate symbol like

int?, it su�ces to extend the interpretation function � with the clauses

�(int?; c) = (lambda (x y) x)

�(int?; (lambda (. . .) e)) = (lambda (x y) y)

Again, the extension, PS(int?), is clearly conservative.

With int?, programs in the extended language can now e�ectively test the type

of a value, and indeed, int? can express Lif. It follows that int? is not expressible in

Pure Scheme.

Proposition 4.3 (i) Pure Scheme cannot express int?.

(ii) PS(int?) can express Lif.

Proof Sketch. This proof illustrates the use of reduction proofs in the framework of

expressiveness. First, PS(int?) can macro-express Lif:

(Lif � �

t

�

f

) = (Bif (cand (int? �) (0? (1

�

�))) �

t

�

f

);

where

(cand �

1

�

2

) = (Bif �

1

�

2

0)

and Bif is expressed as in Proposition 4.1 above. Second, since PS(int?) can express

Lif, it is stronger than Pure Scheme by the preceding proposition.

The converse does not hold: A Lisp-style Lif can distinguish between 0 and all

other values but not an arbitrary integer from the class of procedures.
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Proposition 4.4 PS(Lif) cannot macro-express int?.

Proof Sketch. The proof proceeds along the lines of the proof of Proposition 4.2.

Instead of applying the procedure variable p to 0, the modi�ed context invokes p

on 1:

C

0

(�) = (Bif (p (lambda () 
)) (Bif (p 1) 1 �) 
):

The analysis uses the same reasoning as the above proposition with one exception: a

procedure argument may now also appear in the test position of a Lif-expression. As

above, for the evaluation of (an instance of) C

0

to reach (the replacement of) �, the

procedure may not invoke its argument, may not submit it to a constant function,

but can test it with a Lif-expression. But this is irrelevant because both 1 and

(lambda () 
) cause a Lif-expression to take the same branch. Hence, C

0

(1)

�

=

Lif

C

0

(
), yet, with int? in the language, this is no longer the case: C

0

(1) 6

�

=

int?

C

0

(
).

Putting it all together, we see that Pure Scheme can handle some but not all types

of local branching decisions. A simple, boolean-valued if construct is expressible. The

more typical Lisp-style if adds the expressive power to distinguish one integer value

from all other values, whereas the domain predicate int? permits a distinction between

each integer value and the class of all other values.

Additional Syntax

e ::= . . . j (call=cc e) (continuation captures)

j (abort e) (program stops)

Additional Reduction Steps

E(call=cc e) �! E(e (lambda (x) (abort E(x))))

E(abort e) �! e

Figure 5: Pure Scheme with control

4.2 Non-Local Control

A more interesting expressiveness constellation arises in the context of non-local con-

trol abstractions. Idealized Scheme has the operations abort and call/cc. The former

facility abandons the current evaluation context, realizing a simplistic form of error

handling. The latter applies its subexpression to an abstraction of the current con-

trol state, permitting almost arbitrary manipulations of the 
ow of control. Its name

stands for \call with current continuation" because the Scheme-terminology refers to

an abstraction of the control state as a \continuation" in analogy to denotational

semantics. Figure 5 speci�es the syntax and a simple reduction semantics of Pure
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Scheme with both control operators. We refer to the entire extension as PS(control);

�

=

c+a

denotes its operational equivalence. Two interesting conservative restrictions of

PS(control) are PS(abort) = Pure Scheme + abort and PS(call/cc) = Pure Scheme

+ call/cc with

�

=

a

and

�

=

c

as their respective operational equivalences.

With the semantics of Figure 5, it is trivial to verify that the extensions are

conservative over Pure Scheme. The semantics forms the basis of a simple equational

calculus for abort and call/cc, and permits simple, algebra-like reasoning about

programs with control operations [12, 13]. All three languages are more expressive

than Pure Scheme.

Proposition 4.5 Pure Scheme cannot macro-express non-local control constructs:

Pure Scheme cannot macro-express abort or call/cc relative to PS(abort), PS(call/cc),

and PS(control).

Proof Sketch. The proof relies on Theorem 3.14, i.e., the addition of abort and

call/cc invalidate operational equivalences over Pure Scheme. A typical example

12

is the operational equivalence

(lambda (f ) ((f 0) 
))

�

=

ps

(lambda (f ) 
):

As argued in the proof of Proposition 3.15(i), these two procedures are equivalent in

a functional setting: both diverge when applied to a value. It is easy to check that

this argument still holds in Pure Scheme.

With abort and call/cc, however, there are contexts that invalidate this equiv-

alence. Two examples are (� (lambda (x) (abort x))) and (call=cc �). Whereas

the composition of the �rst expression with these contexts evaluates to 0, the second

expression diverges in the same contexts:

(lambda (f ) ((f 0) 
)) 6

�

=

x

(lambda (f ) 
):

for x ranging over a, c, and c+a.

The next natural question is whether the two control operations are related or

whether they provide distinct facilities. The following proposition shows that in

Idealized Scheme, the two are actually independent enhancements of the expressive

power of the core language.

13

12

This example is a folk theorem example in the theoretical \continuation" community, but it was

also used by Meyer and Riecke to argue the \unreasonableness" of continuations [26].

13

The non-expressibility of abort appears to be an artifact of our modeling of Scheme. A more

realistic model of Scheme systems (as opposed to the Scheme semantics [35]) would have to include

the interactive loop, which provides a delimiter for control actions [9]. By including an appropri-

ate version of this delimiter in PS(control), abort becomes macro-expressible as a combination of

call/cc and the control delimiter [39]. Put di�erently, interactive programming systems actually

add expressive power to the programming language. Peter Lee [personal communication] pointed out

another example of this phenomenon: The addition of a read-eval-print loop also introduces true,

non-eliminable polymorphism into a language like �

t

+ let by providing top-level let declarations

with an open-ended body expression. The fact that such interactive programming environments add

power to their underlying languages suggests that they should be speci�ed as a part of the language

standards!
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Proposition 4.6 The control constructs abort and call/cc cannot express each

other:

(i) PS(abort) cannot macro-express call/cc with respect to PS(control) [39].

(ii) PS(call/cc) cannot (macro-) express abort with respect to PS(control).

Proof Sketch. (i) The proof of the �rst claim shows that call/cc destroys operational

equivalences in PS(abort). A typical example is C(1)

�

=

a

C(
) where

C(�) = (Bif (f (lambda (k) ((k 1) 
)))

(Bif (f (lambda (k) ((k �) 
))) 0 1)


)

These two terms could only di�er if the procedure f invokes its argument, and if this

invocation could return a result. In PS(abort), this is impossible because expres-

sions can either produce a value, diverge, or abort. Therefore, the body of f 's �rst

argument, (lambda (k) ((k 1) 
)), either aborts or diverges, but certainly cannot

return a value. After adding call/cc, however, a context that binds f to

(lambda (x) (call=cc x))

can distinguish the term C(1) from C(
): C(1) 6

�

=

c+a

C(
).

(ii) The second claim is a consequence of Corollary 3.10, i.e., there is a program

with an abort expression for which it is impossible to �nd an operationally equivalent

call/cc expresion. The program is ((lambda (d) 
) (abort 1)); it is the composition

of the context ((lambda (d) 
) �) over PS(call/cc)and an abort expression.

The absence of an operationally equivalent expression for (abort 1) fromPS(call/cc)

follows from the property that expressions in the restricted language cannot eliminate

their evaluation context. More technically, if E(e) is a program over PS(control) such

that all occurrences of abort expressions have the form (abort E(e

0

)) for some e

0

,

then either E(e) �!

�

E(v) or e

�

=

c+a


. The proof of this auxiliary claim is a routine

induction on n in the following statement:

If E(e) �!

n

E(e

0

) then either (1) e

0

is a value, or (2) e

0

contains a stuck

redex, or (3) there is an e

00

such that E(e

0

) �! E(e

00

) and E(e

00

) satis�es

the above condition.

Since an expression over PS(call/cc) does not contain any abort expression, it vac-

uously satis�es the antecedent of the auxiliary claim. Hence, it either diverges or it

returns a value and cannot be interchanged with an abort expression without e�ect

on the behavior of a PS(control) program.

From the existence of a program that contains (abort 1) and the non-existence

of an operationally equivalent expression, it follows that PS(call/cc) cannot express

abort in PS(control).
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The preceding proposition not only establishes the formal expressiveness relation-

ship among the control operators of Idealized Scheme, but it also provides a concrete

example for the second claim in Theorem 3.14.

Theorem 3.14 (restated) Let L

1

= L

0

+ fF

1

; . . . ;F

n

; . . .g be a conservative re-

striction of L

0

. Let

�

=

0

and

�

=

1

be the operational equivalence relations of L

0

and L

1

,

respectively.

(ii) The converse of (i) does not hold. That is, there are cases where L

0

cannot

express some facilities F

1

; . . . ;F

n

; . . ., even though the operational equivalence

relation of L

1

restricted to L

0

is identical to the operational equivalence relation

of L

0

, i.e.,

�

=

0

= (

�

=

1

jL

0

).

Proof. By the preceding proposition we know that PS(call/cc) cannot express abort.

To �nish the proof, we only need to prove that the operational equivalence relation

of PS(call/cc) is a subset of the operational equivalence relation of PS(control):

�

=

c

� (

�

=

c+a

jPS (call=cc)); the other direction is obvious.

Assume that e 6

�

=

c+a

e

0

. We prove that e 6

�

=

c

e

0

. Suppose there is a context C

that can distinguish e and e

0

in PS(control). If the context is also a context over

PS(call/cc), the result is immediate. Otherwise, C contains a number of abort

expressions, and there exists a context D(�;�

1

; . . . ; �

n

) such that

C(�) = D(�; (abort e

1

); . . . ; (abort e

n

)):

Now let a be a variable that does not occur in C , and let the context C

0

(e) be de�ned

as follows:

C

0

(�) = ((call/cc (lambda (a)

(lambda ()

D(�, (a (lambda () e

1

)), . . . , (a (lambda () e

n

)))))))

Next, we show that eval (C(e)) holds if and only if eval (C

0

(e)) holds. First, the

program C

0

evaluates to an intermediate program with a few administrative steps:

C

0

(e) �!

+

D(e, ((lambda (x ) (abort (x ))) (lambda () e

1

)), . . . ,

((lambda (x ) (abort (x ))) (lambda () e

n

)))

Second, by a generalized version of the call-by-value � axiom,

((lambda (x ) (abort (x ))) (lambda () e

i

))

�

=

c+a

(abort e

i

),

and therefore
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D(e, ((lambda (x ) (abort (x ))) (lambda () e

1

)), . . . ,

((lambda (x ) (abort (x ))) (lambda () e

n

)))

terminates if and only if

D(e, (abort e

1

), . . . , (abort e

n

)) = C (e)

terminates. The same analysis holds for the program C(e

0

), and we have thus shown

that the context C

0

(�) distinguishes e and e

0

: e6

�

=

c

e

0

.

14

In summary, we have shown that PS(control) extends both PS(abort) and PS(call/cc)

with respect to expressive power, and the latter two individually extend Pure Scheme

itself. An interesting point is that the extension of PS(abort) to PS(control) is qual-

itatively di�erent from the extension of PS(call/cc) to PS(control). We expect this

point to be a topic of further investigations.

4.3 Assignments

The �nal addition to Pure Scheme is the set!-construct, Scheme's form of assignment

statement. Like in a traditional Algol-like programming language, the set!-expression

destructively alters a binding of an identi�er to a value. A simple reduction seman-

tics for PS(state), Pure Scheme with set! and letrec (for recursive declarations of

variables with initial values), is given in Figure 6. Clearly, PS(state) is a conservative

extension of Pure Scheme; the new semantics is the basis for an equational calculus

for reasoning about operational equivalences in PS(state) [11, 12].

Proposition 4.7 Pure Scheme cannot express set! and letrec.

Proof Sketch. Consider the expression ((lambda (d) (f 0)) (f 0)), which contains

the same subexpression, (f 0), twice. In a functional language like Pure Scheme, the

two subexpressions return the same value, if any, and, given that the value of the �rst

subexpression is discarded, the expression is operationally equivalent to (f 0):

((lambda (d) (f 0)) (f 0))

�

=

ps

(f 0):

The veri�cation of this equivalence in the proof system of Figure 3 is straightforward.

In the extended language, this is no longer true. Consider the context

C(�) = (letrec (f (lambda (x) (set! f (lambda (x) 
)))) �);

14

The transformation of C(e) into C(e

0

) is not a homomorphic translation because it changes the

top-level structure of the program. Since such a translation could encode a program as an integer

and an interpreter as a function on the integers, a restricted language with all computable functions

could express any feature if we allowed such global changes to programs.

33



Additional Syntax

e ::= . . . j (set! x e) (assignments)

j (letrec ([x v] . . .) e) (recursive de�nitions)

Extended Semantics

eval(e) holds i� e �!

�

v or (letrec () e) �!

�

(letrec (. . .) v) for some v

Additional Evaluation Contexts

E ::= . . . j (set! x E)

Additional Reduction Steps

(letrec (. . .) E((fv . . .))) �! (letrec (. . .) E(�(f; v; . . .)))

provided �(f; v; . . .) is de�ned

(letrec (. . .) E((lambda (x

1

. . .) e) v

1

. . .)) �! (letrec (. . . [x

i

v

i

] . . .) E(e[x

j

=v

j

; . . .]))

if the x

i

; . . . are assignable

and the x

j

; . . . are not assignable

(letrec (. . . [x v] . . .) E(x)) �! (letrec (. . . [x v] . . .) E(v))

(letrec (. . . [x u] . . .) E((set! x v)) �! (letrec (. . . [x v] . . .) E(v))

(letrec ([x v] . . .) E((letrec ([y u] . . .) e))) �! (letrec ([x v] . . . [y u] . . .) E(e))

Figure 6: Pure Scheme with state

which declares a procedure f . Upon the �rst application, the procedure modi�es

its declaration so that a second invocation leads to divergence. Consequently, an

expression with a single use of the function converges, but an expression with two

uses diverges:

((lambda (d) (f 0)) (f 0)) 6

�

=

set!

(f 0):

Not surprisingly, assignments increase the expressive power of Idealized Scheme.

Without proof, we add that Scheme's form of assignment is equivalent to cells with

a destructive update operation but without domain predicate.

4.4 Non-evaluating Constructors

Functional languages often use the call-by-name parameter-passing protocol instead

of Pure Scheme's call-by-value technique. Alternatively, such languages o�er data

constructors, say cons, that do not evaluate their arguments [15]. It is a widely held
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belief that such provisions are super
uous in the presence of higher-order procedural

abstractions.

Evaluation Contexts

E ::= � j (u . . .E e . . .) where u = v n fcons$g

Additional Reduction Steps

E((cons$ e

1

e

2

) 1) �! E(e

1

)

E((cons$ e

1

e

2

) 2) �! E(e

2

)

Figure 7: Pure Scheme(cons$)

As shown in the previous section, call-by-value languages cannot express call-

by-name abstractions. This result also holds in the extended framework of Pure

Scheme. However, the introduction of non-evaluating data constructors is a bit more

subtle. To study this issue more thoroughly, we consider two di�erent conservative

extensions of Pure Scheme, each of which incorporates a di�erent form of a call-

by-name constructor. The �rst extension, PS(lazy), provides the constructor as a

�rst-class function:

v ::= . . . j cons$ (call-by-name cons)

j (cons$ e e) (\lazy" values)

For simplicity, \lazy" values are functions, and 1 and 2 serve as selector arguments.

Figure 7 contains the corresponding extension of the reduction relation. Though

not equivalent to full call-by-name abstractions, this addition of a single call-by-name

primitive still introduces new semantic capabilities. A proof of this statement is easily

derivable from Proposition 3.15.

The second extension, PS(delayed), is a restriction of the �rst. The non-evaluating

constructor is no longer a �rst-class function but is only available in �rst-order form:

v ::= . . . j (cons$ e e) (\lazy" values)

The reduction relation remains the same (Figure 7). It is this restricted extension

that is expressible in Pure Scheme.

Proposition 4.8 Pure Scheme can macro-express cons$ relative to PS(delayed).

Proof. The desired syntactic abstraction is

(cons$ �

1

�

2

) = (lambda (s)

(Bif (0? (1

�

s)) �

1

(Bif (0? (1

�

(1

�

s))) �

2


)))
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It is easy to check that the corresponding translation satis�es the reduction clauses

of the original functions. The result follows from Corollary 3.13.

Remark 9 (Weak Expressibility). If the extended language contained selector

functions for lazy values, the new values would only be weakly expressible for the

same reason as Bif, true, and false are only weakly expressible (see Remark 8).

5 The Conciseness Conjecture

If a programming language can represent all computable functions (on the integers),

it contains a functionally equivalent counterpart to each program in a more expressive

language. This raises the question as to what advantages there are to programming

in the more expressive language when equivalent programs in the simpler language

already exist. By the de�nition of an expressible construct, programs in a less expres-

sive language generally have a globally di�erent structure from functionally equivalent

programs in a more expressive language. But, is this really all we can say about pro-

gramming in more expressive languages?

By studying a number of examples, we have come to the conclusion that programs

in less expressive languages exhibit repeated occurrences of programming patterns,

and that this pattern-oriented style is detrimental to the programming process. To

illustrate our point, we begin by presenting two examples. The �rst example compares

two equivalent programs in variants of full Scheme and Scheme without assignment.

15

Consider the following program fragment:

(let (. . .

[TransManager (let (TransCounter 0)

(lambda (TransType)

(if (counter? TransType)

TransCounter

(begin

(set! TransCounter (add1 TransCounter))

BODY ))))]

. . . )

. . . (TransManager t1 ) . . . )

The program �rst binds the variable TransManager to a procedure that handles

transactions and simultaneously counts how many transactions it performs. The

procedure accomplishes the counting by allocating a local variable, TransCounter , in

its private scope with initial value 0. For every subsequent proper transaction, the

15

This comparison is part of the folklore of the expressiveness discussion [24:165]; the particular

example is adapted from our previous paper on the equational semantics of assignments [11].
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procedure then uses an assignment to increase TransCounter by 1. There is a special

transaction of appropriate type that can check the number of past transactions.

A program in Pure Scheme|or any other functional language without assignments|

must realize the counting of transactions in a di�erent way. For example, the above

program fragment would have to be rewritten into something like the following code:

(let (. . .

[TransManager (lambda (TransType TransCounter)

(if (counter? TransType)

TransCounter

(cons (add1 TransCounter)

BODY )))]

[TransCounter 0]

. . . )

. . . (let (result (TransManager t1 TransCounter))

(let ([TransCounter (car result)]

[ProperResult (cdr result)])

. . . )))

This functional version of the program declares a variable for transaction counting in

the same scope as the transaction manager procedure, which now takes the current

value of the counter as an additional argument. Upon completion of the transaction,

TransManager returns a pair whose �rst component is the increased counter value

and whose second component is the proper result of the transaction. All calls to

TransManager pass the current value of TransCounter as an extra argument. Finally,

at every call site there is also some additional code to disassemble the result in the

desired way.

The functional version o�ers many opportunities for code simpli�cations. Specif-

ically, every call site for the transaction procedure could immediately update the

counter if the transaction is a proper transaction, and could return the value of the

counter if the transaction causes a check on the number of previous calls:

(let (. . .

[TransManager (lambda (TransType) BODY )]

[TransCounter 0]

. . . )

. . . (let (TransCounter (add1 TransCounter))

(TransManager t1 )

. . . ))

But, even after simplifying the functional version as much as possible, it always

contains a large number of repeated occurrences of add1 expressions, one per call site

for TransManager , distributed over the whole program.
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The second example concerns the use of control operators. Imagine a large func-

tional program consisting of several modules. The interfaces of these modules have

fully formal speci�cations in the form of (variants of) parameter descriptions. Now

suppose that because of some extension of the program's requirements, one of the

modules needs the capability to stop the execution of the (revised) program. In a

functional setting, this task is accomplished by converting the relevant parts of the

program into (simpli�ed) continuation-passing style. Speci�cally, each function that

(transitively) uses the critical module passes a functional abstraction of the rest of

the computation to the critical module, and its call sites are in such a position that

upon return, no further work needs to be done. It is thus up to the critical mod-

ule to stop or to continue the execution of the rest of the program. If the former

is necessary, the module discards the additional argument; otherwise, it invokes the

argument on some intermediate result. This programming style, however, requires

fundamental changes to the original, non-abortive program. First, the interface to

the critical module must now indicate the possibility that the module could abort the

program execution. Second, and more importantly, the code for every call site of a

function with connections to the critical module must now satisfy special conditions.

Again, as in the above example, there are alternatives, but for each of them, the lack

of a non-expressible facility, this time the abort operation, causes the occurrence of

programming patterns throughout the entire program.

Based on these examples and others with a similar 
avor, we have come to believe

that the major negative consequence of a lack of expressiveness is the abundance

of programming patterns to make up for the missing, non-expressible constructs.

Clearly, a more speci�c conjecture about this issue must address the question of

which programs actually bene�t from the additional expressive power of larger lan-

guages since not all of them do. A relatively naive answer would be that improved

programs use non-expressible constructs in a sensible, observable manner. An exam-

ple of a Scheme program that does not use assignments sensibly is a function whose

only assignment statement occurs at procedure entry and a�ects the parameter. A

more formal approach to the notion of \observable manner" could be the idea that

a program with a sensible use of an additional feature must be transformable into a

context that can witness operational distinctions between phrases in the restricted

language. Despite the lack of a good de�nition for \sensible uses of constructs" or even

for \programming patterns," we still venture to formulate the following conjecture

about the use of expressive programming languages.

Conciseness Conjecture. Programs in more expressive programming languages that

use the additional facilities in a sensible manner contain fewer programming patterns

than equivalent programs in less expressive languages.

The most disturbing consequence of programming patterns is that they are an

obstacle to an understanding of programs for both human readers and program-

processing programs. In the above TransManager example, only a global program
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analysis can verify that the add1 expressions really count the number of transac-

tions. Even worse there are two distinct explanations for a continuation-passing style

subprogram in a call-by-name functional setting: it may either implement some so-

phisticated control structure, or it may implement a call-by-value protocol [34]. Only

a thorough analysis of the details of the continuation-passing program fragment can

reveal the true purpose behind the occurrence of the programming patterns. Thus,

the main bene�t of the use of expressive languages seems to be the ability to abstract

from programming patterns with simple statements and to state the purpose of a

program in the concisest possible manner.

6 Related Work

The earliest attempt at de�ning and comparing the expressive power of programming

languages is the work on comparative schematology by Chandra, Hewitt, Manna,

Paterson, and others in the early and mid seventies [6, 32]. Schematology studies

programming languages with a simple set of control constructs, e.g., while-loop pro-

grams or recursion equations, and with uninterpreted constant and function symbols.

As in predicate logic without arithmetic, it is possible to decide certain questions

about such uninterpreted program schemas. Moreover, the languages are not univer-

sal, and it makes sense to compare the set of functions that are computable based

on di�erent sets of control constructs, or based on an interpretation of a subset of

the function symbols as operations on data structures like stacks, arrays, queues. In

the presence of full arithmetic, i.e., representations of integers with an addition and

multiplication function, the approach can no longer compare the expressive power of

programming languages since everything can be encoded and all functions become

computable.

A second approach is due to Fortune et al [14]. Their basic observation is that

statically typed languages without facilities for constructing diverging programs can

only encode a subset of the total computable functions. For example, whereas the

simply typed �-calculus-language can de�ne the elementary recursive functions, the

second-order version of the calculus comprises the �

0

elementary recursive functions.

Like schematology, this approach crucially relies on the fact that the languages under

consideration are not universal. While these two approaches illuminate some of the

issues about the expressiveness of data and type structures, their applicability to full-


edged programming languages is impossible because an equating of expressiveness

with computational power is uninteresting from the programmer's perspective.

Recently, Hoare [20] proposed classifying programming languages according to

the equational and inequational laws that their programming constructs satisfy. He

illustrates this idea with a collection of examples. The laws are based on denotational

semantics, which are generally sound with respect to operational equivalences. Given

our theorems that connect expressiveness with the validity of operational equivalences

in programming languages, this approach seems to be a related attempt at formalizing
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or comparing the expressiveness of languages.

Williams [45] looks at a whole spectrum of formalization techniques for seman-

tic conventions in formal systems and, in particular, programming languages. His

work starts with ideas of applicative and de�nitional extensions of formal systems

but also considers techniques that are more relevant in computational settings, e.g.,

compilation and interpretation. The goal of Williams's research is a comparison of

formalization techniques and not a study of the expressiveness of programming lan-

guages. Some of his results may be relevant for future extensions of our work.

A secondary piece of related work is the study of the full abstraction property of

mathematical models [25, 31, 33] and the representability of functions in �-calculi [3,

4]. In many cases, the natural denotational model of a programming language contains

too many elements so that operationally equivalent phrases have di�erent mathemat-

ical meanings. Since it is relatively easy to reverse-engineer a programming language

from a model, the equality relation of models without the full abstraction property

directly corresponds to the operational equivalence of a conservative extension. As a

consequence, such models naturally lead to the discovery of non-expressible program-

ming constructs. In the framework of �-calculus languages, such facilities are multiple

argument functions that do not require the values of all arguments to determine their

result [33, 1]. Still, the study of full abstraction does not provide true insight into the

expressive power of languages. On one hand, the discovery of new facilities directly

depends on the choice of a model. For example, whereas a direct model of �

n

requires

the above-mentioned facility for exploiting deterministic parallelism, a continuation

model leads to operations on continuations and to restrictions of such operations [39].

On the other hand, by Theorem 3.14 we also know that a change in the operational

equivalence relation is only a su�cient but not a necessary condition for the non-

expressibility of a programming construct. In short, research on full abstraction is a

valuable contribution to, but not a replacement for, the study of expressiveness (see

Proposition 3.15).

7 Towards a Formal Programming Language De-

sign Space

In the preceding sections we developed several ideas on a formal framework for com-

paring the expressive power of programming languages. Based on informal claims in

the literature, we argued that

� the key to programming language comparisons is a restriction on the set of

admissible translations between programming languages.

Speci�cally, we proposed that

� the translations between languages should preserve as much of a program's

structure as possible.
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An application of this principle to conservative language extensions produced a num-

ber of criteria for deciding whether additional operators increase the expressive power

or not. For a concrete example, we considered several language extensions of Pure

Scheme, a simple functional programming language, and found that our formal ex-

pressiveness results are close to the intuitive ideas in the literature.

The most important criterion for comparing programming languages showed that

an increase in expressive power may destroy semantic properties of the core language

that programmers may have become accustomed to (Theorem 3.14). Among other

things, this invalidation of operational laws through language extensions implies that

there are now more distinctions to be considered for semantic analyses of expressions

in the core language. On the other hand, the use of more expressive languages seems

to facilitate the programming process by making programs more concise and abstract

(Conciseness Conjecture). Put together, this result says that

� an increase in expressive power is related to a decrease of the set of \natural"

(mathematically appealing) operational equivalences.

An interesting challenge is to �nd expressive extensions of languages whose additional

facilities do not invalidate operational laws.

16

The current framework is only a �rst step towards a formal programming language

design space. On one hand, we must investigate our comparison relation for arbitrary

languages in more depth before we can judge its general usefulness. On the other

hand, our set of restrictions on language translations is clearly not the only interesting

basis for comparing programming languages. There is an entire spectrum of feasible

restrictions that yield alternative notions of expressiveness, and these alternatives

deserve exploration, too. Finally, we have not yet tackled the problem of deriving

properties from expressiveness claims but expect to do so in the future. In the long

run, we hope that some theory of language expressiveness develops into a formal

theory of the programming language design space, and that such a theory can help a

programmer in selecting the right set of constructs for solving a problem.

Acknowledgement. Dan Friedman directed my attention to the idea of expres-

siveness by insisting that an understanding of new programming constructs in terms

of procedures or macro implementations is superior to an implementation based on

interpreters. Conversations with Bruce Duba and Mitchell Wand provided the moti-

vation for further work in this direction. Bob Harper pointed out the relationship to

logic, which ultimately led to the current formalization. Tim Gri�n's remark that my

original approach focused too much on macro expressiveness, redirected my e�orts

towards the broader framework of expressiveness of Section 3.1. Hans Boehm, Robert

16
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