
Adding Types to Untyped Languages

Matthias Felleisen
PLT

Northeastern University, Boston, Massachusetts
matthias@ccs.neu.edu

Abstract
Over the last 15 years, we have experienced a programming lan-
guage renaissance. Numerous scripting languages have become
widely used in industrial and open-source projects. They have sup-
plemented the existing mainstream languages—C++ and Java—
and, in contexts such as systems administration and web program-
ming, they have started to play a dominant role.

While each scripting language comes with its own philosophy,
their designers share an antipathy to types. As a result, these lan-
guages come without a static type system. Most script developers
initially welcome this freedom, but soon discover that the lack of a
type system deprives them of an essential maintenance tool.

My keynote explains my team’s approach to equip such lan-
guages with a type system. The goal of our work is to empower
programmers so that they can gradually enrich scripts with types
on a module-by-module basis as they perform maintenance work
on the system. Naturally, we wish to ensure type soundness so that
the type annotations are meaningful, and we wish to accommodate
the programming idioms of the original language in order to keep
the overhead of type enrichment low.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Language Con-
structs and Features]: Modules, Packages

General Terms Languages, Design

Keywords Software Contracts, Scheme, Type Systems

From Scripts to Programs, One step at a Time
When scripts in untyped languages grow into large systems, main-
taining them becomes difficult. A lack of explicit and meaningful
type declarations in scripting languages means that programmers
must re-discover critical pieces of design information every time
they wish to change the program. This analysis step slows down
the maintenance process and may even introduce errors when the
maintainer recovers only a part of a function’s intended signature.

The conventional way to address the problem is to port the sys-
tem from the scripting language to a typed language. This solution
comes with serious disadvantages, however. First, it requires rewrit-
ing code that works well in many cases, often because it has been in
use for a long time. Of course, any change to working code may in-
troduce errors and should therefore be avoided if possible. Second,

Copyright is held by the author/owner(s).
TLDI’10, January 23, 2010, Madrid, Spain.
ACM 978-1-60558-891-9/10/01.

mainstream type-safe languages do not accommodate smooth and
type-safe interactions with dynamically typed scripting languages.
Programmers are thus forced to port entire systems, not just pieces,
and they then end up maintaining both old and new versions.

My team and I are working on an alternative to the whole sale
port of systems, namely the gradual enrichment of scripts with
types. Our approach involves the development of a typed sister lan-
guage and sound interoperation of typed and untyped code. To this
end, we first equip the language with a module system that supports
both the typed and untyped variant of the language. The second
key piece is a behavioral contract system for module interfaces. In
general these contracts can monitor all kinds of invariants as even
higher-order values flow from one module to another [2]; here it
helps us enforce types dynamically and thus enables sound inter-
operability between the typed and untyped world [6]. The third and
final piece is a type system that accommodates the idioms of the
original language as much as possible [5, 7] so that enriching un-
typed modules with types requires few changes to existing code.

Over the past four years, we have validated this recipe with
the development of Typed Scheme, a typed sister language to PLT
Scheme [1]. Experiments with around 10,000 lines of code shows
that the type-enrichment of existing PLT Scheme modules requires
changes to some five percent of the lines in order to appease the
type checker. Although this percentage is low, it is not ideal and
many challenges remain. Our next steps will hopefully introduce
contracts for polymorphic types [3], add types for PLT Scheme’s
first-class classes and units [4], and provide tools for synthesizing
type annotations for untyped modules.

References
[1] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. Advanced

macrology and the implementation of Typed Scheme. Scheme Work-
shop 2007. Tech. Rep. DIUL-RT-0701, Université Laval, Quebec.

[2] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order
functions. In International Conference on Functional Programming,
pp. 48–59, 2002.

[3] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Kr-
ishnamurthi. Relationally-parametric polymorphic contracts. In Third
Symposium on Dynamic Languages, pp. 29–40, 2007.

[4] T. Stephen Strickland and Matthias Felleisen. Contracts for first-class
modules. In Fifth Symposium on Dynamic Languages, pp. 27–38, 2009.

[5] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen.
Practical variable-arity polymorphism. In European Symposium on
Programming, pp. 32–46, 2009.

[6] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage migration:
from scripts to programs. In Second Symposium on Dynamic Lan-
guages, pp. 964–974, 2006.

[7] Sam Tobin-Hochstadt and Matthias Felleisen. The design and imple-
mentation of Typed Scheme. In Symposium on Principles of Program-
ming Languages, pp. 395–406, 2008.


